- 集合与常用逻辑用语
- 函数与导数
- + 导数在函数中的其他应用
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x2﹣1,函数g(x)=2tlnx,其中t≤1.
(Ⅰ)如果函数f(x)与g(x)在x=1处的切线均为l,求切线l的方程及t的值;
(Ⅱ)如果曲线y=f(x)与y=g(x)有且仅有一个公共点,求t的取值范围.
(Ⅰ)如果函数f(x)与g(x)在x=1处的切线均为l,求切线l的方程及t的值;
(Ⅱ)如果曲线y=f(x)与y=g(x)有且仅有一个公共点,求t的取值范围.
已知f(x)=x﹣1,若|f(x)|≥ax﹣1在x∈R上恒成立,则实数a的取值范围是( )
A.[0,1] |
B.(﹣∞,﹣1]∪[1,+∞) |
C.[﹣1,1] |
D.(﹣∞,0]∪[1,+∞) |