刷题首页
题库
高中数学
题干
已知函数
,其中
.
(1)若
在区间
上为增函数,求
的取值范围;
(2)当
时,(ⅰ)证明:
;(ⅱ)试判断方程
是否有实数解,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2016-03-04 03:13:55
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,若曲线
(
为常数)过点
,且该曲线在点
处的切线与直线
平行,则
.
同类题2
定义
是
的导函数
的导函数,若方程
有实数解
,则称点
,
为函数
的“拐点”.可以证明,任意三次函数
都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题:
①存在有两个及两个以上对称中心的三次函数;
②函数
的对称中心也是函数
的一个对称中心;
③存在三次函数
,方程
有实数解
,且点
为函数
的对称中心;
④若函数
,则
.
其中正确命题的序号为
(把所有正确命题的序号都填上).
同类题3
已知常数
是正数,若关于
的不等式
(
)的解集中有且仅有一个正整数,则整数
等于
A.1
B.2
C.3
D.4
同类题4
已知函数
,
,对于
,
恒成立.
(Ⅰ)求函数
的解析式;
(Ⅱ)设函数
.
①证明:函数
在区间在
上是增函数;
②是否存在正实数
,当
时函数
的值域为
.若存在,求出
的值,若不存在,则说明理由.
同类题5
已知
(1)若对于任意
,都有
成立,求
的取值范围;
(2)若
,且
,证明:
相关知识点
函数与导数
导数及其应用
导数的综合应用
导数在函数中的其他应用