- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- + 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若存在实常数
和
,使得函数
和
对其公共定义域上的任意实数
都满足:
和
恒成立,则称此直线
为
和
的“隔离直线”,已知函数
,
,
,有下列命题:
①
在
内单调递增;
②
和
之间存在“隔离直线”,且
的最小值为
;
③
和
之间存在“隔离直线”,且
的取值范围是
;·
④
和
之间存在唯一的“隔离直线”
.
其中真命题的个数为 (请填所有正确命题的序号)













①


②




③




④



其中真命题的个数为 (请填所有正确命题的序号)
设函数f(x)=-x3+mx2-m(m>0).
(1)当m=1时,求函数f(x)的单调减区间;
(2)设g(x)=|f(x)|,求函数g(x)在区间[0,m]上的最大值;
(3)若存在t≤0,使得函数f(x)图象上有且仅有两个不同的点,且函数f(x)的图象在这两点处的两条切线都经过点(2,t),试求m的取值范围.
(1)当m=1时,求函数f(x)的单调减区间;
(2)设g(x)=|f(x)|,求函数g(x)在区间[0,m]上的最大值;
(3)若存在t≤0,使得函数f(x)图象上有且仅有两个不同的点,且函数f(x)的图象在这两点处的两条切线都经过点(2,t),试求m的取值范围.