- 集合与常用逻辑用语
- 函数与导数
- + 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=
(a∈R).
(Ⅰ)若f(1)=2,求函数y=f(x)-2x在[
,2]上的值域;
(Ⅱ)当a∈(0,
)时,试判断f(x)在(0,1]上的单调性,并用定义证明你的结论.

(Ⅰ)若f(1)=2,求函数y=f(x)-2x在[

(Ⅱ)当a∈(0,

已知函数f(x)=kax-a-x(a>0且a≠1)是R上的奇函数.
(Ⅰ)求常数k的值;
(Ⅱ)若a>1,试判断函数f(x)的单调性,并加以证明;
(Ⅲ)若a=2,且函数g(x)=a2x+a-2x-2mf(x)在[0,1]上的最小值为1,求实数m的值.
(Ⅰ)求常数k的值;
(Ⅱ)若a>1,试判断函数f(x)的单调性,并加以证明;
(Ⅲ)若a=2,且函数g(x)=a2x+a-2x-2mf(x)在[0,1]上的最小值为1,求实数m的值.
下列叙述:
①化简
的结果为﹣
.
②函数y=
在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;
③函数y=log3x+x2﹣2在定义域内只有一个零点;
④定义域内任意两个变量x1,x2,都有
,则f(x)在定义域内是增函数.
其中正确的结论序号是_____
①化简


②函数y=

③函数y=log3x+x2﹣2在定义域内只有一个零点;
④定义域内任意两个变量x1,x2,都有

其中正确的结论序号是_____
已知函数f(x)=a+
是奇函数,a∈R是常数.
(Ⅰ)试确定a的值;
(Ⅱ)用定义证明函数f(x)在区间(0,+∞)上是减函数;
(Ⅲ)若f(2t+1)+f(1-t)<0成立,求t的取值范围.

(Ⅰ)试确定a的值;
(Ⅱ)用定义证明函数f(x)在区间(0,+∞)上是减函数;
(Ⅲ)若f(2t+1)+f(1-t)<0成立,求t的取值范围.
已知函数f(x)=
,其中c为常数,且函数f(x)的图象过原点.
(1)求c的值,并求证:f(
)+f(x)=1;
(2)判断函数f(x)在(-1,+∞)上的单调性,并证明.

(1)求c的值,并求证:f(

(2)判断函数f(x)在(-1,+∞)上的单调性,并证明.
已知函数
.
(1)判断f(x)的奇偶性,说明理由;
(2)当x>0时,判断f(x)的单调性并加以证明;
(3)若f(2t)-mf(t)>0对于t∈(0,+∞)恒成立,求m的取值范围.

(1)判断f(x)的奇偶性,说明理由;
(2)当x>0时,判断f(x)的单调性并加以证明;
(3)若f(2t)-mf(t)>0对于t∈(0,+∞)恒成立,求m的取值范围.
已知函数
(
),则
( )



A.是偶函数,且在![]() | B.是奇函数,且在![]() |
C.是偶函数,且在![]() | D.是奇函数,且在![]() |