- 集合与常用逻辑用语
- 函数与导数
- + 函数的单调性
- 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为
,若存在常数
,使得
对所有实数
均成立,则称函数
为“期望函数”,下列函数中“期望函数”的个数是( )
①
②
③
④






①




A.![]() | B.![]() | C.![]() | D.![]() |
已知f(x)=ln x,g(x)=x2-2ax+4a-1,其中a为实常数.
(1)若函数f[g(x)]在区间[1,3]上为单调函数,求a的取值范围;
(2)若函数g[f(x)]在区间[1,e3]上的最小值为-2,求a的值.
(1)若函数f[g(x)]在区间[1,3]上为单调函数,求a的取值范围;
(2)若函数g[f(x)]在区间[1,e3]上的最小值为-2,求a的值.
设
是定义在
上的增函数,且对于任意的
都有
恒成立.如果实数
满足不等式
,那么
的取值范围是( )







A.(9,49) | B.(13,49) | C.(9,25) | D.(3,7) |
设函数f(x)=
x2+alnx(a<0).
(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为
,求实数a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.

(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为

(2)求f(x)的单调区间;
(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.