刷题首页
题库
初中数学
题干
己知:如图,△ABC中,点O是AC上(端点除外)的一动点,过点O作直线,MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACG的平分线于点F,连接A
A.A
B.
(1)求证:∠ECF=90°;
(2)当点O运动到何处时,四边形AECF是矩形?请说明理由:
(3)在(2)的条件下,△ABC应该满足条件:__________,就能使矩形AECF变为正方形, (直接添加条件,无需证明)
上一题
下一题
0.99难度 解答题 更新时间:2019-04-28 12:11:56
答案(点此获取答案解析)
同类题1
如图,在正方形
中,点
E
,
F
在边
上,且
,P为对角线
上一点,则下列线段的长等于
的最小值的是
A.
B.
C.
D.
同类题2
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
同类题3
如图,正方形ABCD中,AB=
,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,C
A.
(1)求证:AE=CF;
(2)若A,E,O三点共线,连接OF,求线段OF的长.
(3)求线段OF长的最小值.
同类题4
如图1,在正方形
ABCD
的外侧,作两个等边三角形
ADE
和
DCF
,连接
AF
,
BE
.
(1)请判断:
AF
与
BE
的数量关系是______________.位置关系是_______________.
(2)如图2,若将条件“两个等边三角形
ADE
和
DCF
”变为“两个等腰三角形
ADE
和
DCF
,且
EA=ED=FD=FC
”,第(1)问中的结论是否仍然成立?请做出判断并给与证明.
(图1) (图2)
同类题5
如图,四边形
ABCD
为正方形,
O
为正方形
ABCD
对角线的交点,
M
是
CA
延长线上的一个动点(点
M
与点
C
、
A
都不重合),过点
A
、
C
分别向直线
BM
作垂线段,垂足分别为
E
,
F
,连接
OE
.
(1)若
,求证:
;
(2)用等式直接写出线段
CF
,
AE
,
OE
之间的数量关系,并证明.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明