- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- + 正方形的判定
- 正方形的判定定理理解
- 添一个条件使四边形是正方形
- 求证四边形是正方形
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点

A. (1)求证:四边形CDOF是矩形; (2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由. |

已知四边形ABCD是平行四边形,下列条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.选两个作为补充条件,使得四边形ABCD是正方形,其中错误的选法是( )
A.①② | B.②③ | C.①③ D. ③④ |
在四边形中,能判定这个四边形是正方形的条件是()
A.对角线相等,对边平行且相等 | B.一组对边平行,一组对角相等 |
C.对角线互相平分且相等,对角线互相垂直 | D.一组邻边相等,对角线互相平分 |
已知,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H 分别在正方形ABCD边AB、CD、DA上,AH=2.
(1)如图1,当DG=2,且点F在边BC上时.

求证:① △AHE≌△DGH;
② 菱形EFGH是正方形;
(2)如图2,当点F在正方形ABCD的外部时,连接CF.

① 探究:点F到直线CD的距离是否发生变化?并说明理由;
② 设DG=x,△FCG的面积为S,是否存在x的值,使得S=1,若存在,求出x的值;若不存在,请说明理由.
(1)如图1,当DG=2,且点F在边BC上时.

求证:① △AHE≌△DGH;
② 菱形EFGH是正方形;
(2)如图2,当点F在正方形ABCD的外部时,连接CF.

① 探究:点F到直线CD的距离是否发生变化?并说明理由;
② 设DG=x,△FCG的面积为S,是否存在x的值,使得S=1,若存在,求出x的值;若不存在,请说明理由.
如图,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形ABCD成为正方形,则这个条件是____________.(补充一个即可)

下列说法中,错误的是( ).
A.一组对边平行且相等的四边形是平行四边形 |
B.两条对角线互相垂直且平分的四边形是菱形 |
C.四个角都相等的四边形是矩形 |
D.四条边相等的四边形是正方形 |
顺次连接四边形各边中点,所得的图形是__________。顺次连接对角线______________的四边形的各边中点所得的图形是矩形。顺次连接对角线_________的四边形的各边中点所得的四边形是菱形。顺次连接对角线_________的四边形的各边中点所得的四边形是正方形。
顺次连接四边形各边中点,所得的图形是__________。顺次连接对角线______________的四边形的各边中点所得的图形是矩形。顺次连接对角线_________的四边形的各边中点所得的四边形是菱形。顺次连接对角线_________的四边形的各边中点所得的四边形是正方形。
如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)求证:AF=CE;
(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论
(1)求证:AF=CE;
(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论
