- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm; 过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点

A. (1)求证:四边形OBEC为矩形; (2)求矩形OBEC的面积. |

过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,C

A. (1)求证:四边形AECF是菱形; (2)若AB=6,AC=10,EC= ![]() |

如图,P、G是菱形ABCD的边BC、DC的中点,K是菱形的对角线BD上的动点,若BD=8,AC=6,则KP+KG的最小值是_____.

如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH, △CFG分别沿EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的
时,则
为( )




A.![]() | B.2 | C.![]() | D.4 |
已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.

如图,已知△ABC,按如下步骤作图:
①分别以A、C为圆心,以大于
AC的长为半径在AC两边作弧,交于两点M,N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、C

①分别以A、C为圆心,以大于

②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、C
A. (1)求证:四边形ADCE是菱形. (2)当∠ACB=90°,AC=16,△ADC的周长为36时,直接写出四边形ADCE的面积为______. |

将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,
①求菱形的边长;
②求折痕EF的长.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,
①求菱形的边长;
②求折痕EF的长.
