- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,四边形ABCD和AEGF都是菱形,∠A=60°,AD=3,点E,F分别在AB,AD边上(不与端点重合),当△GBC为等腰三角形时,AF的长为_____.

如图,在□ABCD中,按以下步骤作图:①以点A为圆心,AB的长为半径作弧,交AD于点F;②分别以点B、F为圆心,大于
BF的长为半径作弧,两弧在∠BAD内交于点G;③作射线AG,交边BC于点


A.若BF=6,AB=5,则AE的长是____________. |

如图,在菱形ABCD中,∠BAC=60°,AC与BC交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是( ).
①OG=
AB;
②与△EGD全等的三角形共有5个;
③S四边形ODGF>S△ABF;
④由点A、B、D、E构成的四边形是菱形.

①OG=

②与△EGD全等的三角形共有5个;
③S四边形ODGF>S△ABF;
④由点A、B、D、E构成的四边形是菱形.

A.①③④ | B.①④ | C.①②③ | D.②③④ |
如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.

(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.

(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
如图,BD是菱形ABCD的对角线,E是边AD的中点,F是边AB上的一点,将△AEF沿EF所在的直线翻折得到△A′EF,连结A′

A.若AB=5,BD=6,当点A′到∠A的两边的距离相等时,A′C的长是_____. |

如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于
的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)求证:四边形ABEF是菱形.
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.

(1)求证:四边形ABEF是菱形.
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
