- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- + 菱形的判定与性质综合
- 根据菱形的性质与判定求角度
- 根据菱形的性质与判定求线段长
- 根据菱形的性质与判定求面积
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在
中,
,BD为AC的中线,过点C作
于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若AF=8,CF=6,则四边形BDFG的周长为_______________.




如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD相交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,若AB=
,BD=2,则OE的长等于________.


如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥B

A. (1)求证:四边形OCED是菱形; (2)若∠BAC=30°,AC=8,求菱形OCED的面积. |

如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),P是对角线OB上的一个动点,点D(0,1)在y轴上,当PC+PD最短时,最短距离是_____.

如图,E,F是菱形ABCD对角线上的两点,且AE=C
(1)求证:四边形BEDF是菱形;
(2)若
,AD=6,AE=DE,求菱形BEDF的周长
A. |
(2)若


某工厂沿路护栏的纹饰部分是由若干个和菱形ABCD(如图①)全等的图案组成的,每增加一个菱形,纹饰长度就增加dcm(如图②).已知菱形ABCD的边长为6
cm,∠BAD=60°.
(1)求AC的长;
(2)若d=15cm,纹饰总长度L为3918cm,则需要多少个这样的菱形图案?

(1)求AC的长;
(2)若d=15cm,纹饰总长度L为3918cm,则需要多少个这样的菱形图案?
