- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B…依此类推,则平行四边形AO2019C2020B的面积为( )cm2.


A.![]() | B.![]() | C.![]() | D.![]() |
如图,四边形ABCD中,对角线AC、BD相交于点O,
,
,且∠ABC=90°.

(1)求证:四边形ABCD是矩形.
(2)若∠ACB=30°,AB=1,求①∠AOB的度数;②四边形ABCD的面积.



(1)求证:四边形ABCD是矩形.
(2)若∠ACB=30°,AB=1,求①∠AOB的度数;②四边形ABCD的面积.
如图,在矩形 ABCD 中,AB=1,BC=2,将其折叠,使 AB 边落在对角线 AC上,得到折痕 AE,则点 E 到点 B 的距离为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于( )


A.144° | B.126° | C.108° | D.72° |
如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知∠EFG=58°,则∠BEG等于( )


A.58° | B.116° | C.64° | D.74° |
如图,将矩形ABCD沿对角线BD折叠,点A落在点E处,DE交BC于点F,若∠CFD=40°,则∠ABD的度数为( )


A.50° | B.60° | C.70° | D.80° |