- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接AP并延长AP交CD于F点,连接BP.
(1)求证:四边形AECF为平行四边形;
(2)若BC=
AB,判断△ABP的形状,并证明你的结论.
(1)求证:四边形AECF为平行四边形;
(2)若BC=


如图,在矩形ABCD中,BC=4,点E是AD的中点,将矩形ABCD沿直线BE折叠,点A对应点为点A',延长BA',交边DC于点F.若点F是DC的三等分点,则CD的长为_____.

如图,将一张长方形纸片ABCD的角C沿着GF折叠,使得C点落在长方形ABCD内的E处,FH平分∠BFE,则∠GFH的度数α满足( )


A.90°<α<180° | B.α=90° |
C.0°<α<90 | D.α随着折痕变化而变化 |
如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
(1)求证:四边形AECF是平行四边形;
(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.
(1)求证:四边形AECF是平行四边形;
(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.

如图,在矩形纸片ABCD中,BM,DN分别平分∠ABC,∠CDA,沿BP折叠,点A恰好落在BM上的点E处,延长PE交DN于点F沿DQ折叠,点C恰好落在DN上的点G处,延长QG交BM于点H,若四边形EFGH恰好是正方形,且边长为1,则矩形ABCD的面积为____ .

如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为( )


A.(![]() ![]() | B.(![]() ![]() |
C.(![]() ![]() | D.(![]() ![]() |
如图,矩形ABCD中,AB
,BC
,连结对角线AC,点O为AC的中点,点E为线段BC上的一个动点,连结OE,将△AOE沿OE翻折得到△FOE,EF与AC交于点G,若△EOG的面积等于△ACE的面积的
,则BE=_____.




如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D,C两点分别落在点D′,C′的位置,∠DEF=∠D′EF,并利用量角器量得∠EFB=66°,则∠AED′的度数为( )


A.66° | B.132° | C.48° | D.38° |
如图,矩形纸片ABCD中,AB=4,点E在边CD上移动连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′
(1)当点E与点C重合时,设B′C′与AD的交点为F,若AD=4DF,则AD=______
(2)若AD=6,B′C′的中点记为P,则DP的取值范围是______ 
(1)当点E与点C重合时,设B′C′与AD的交点为F,若AD=4DF,则AD=
(2)若AD=6,B′C′的中点记为P,则DP的取值范围是
