- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为()


A.3 | B.4 | C.6 | D.8 |
将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.

(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;
(2)如图2,在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′作D′G⊥C′O交E′F于T点,交OC′于G点,T坐标为(3,m),求m.

(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;
(2)如图2,在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′作D′G⊥C′O交E′F于T点,交OC′于G点,T坐标为(3,m),求m.
如图,矩形纸片
中,
.第一次将纸片折叠,使点
与点
重合,折痕与
交于点
;设
的中点为
,第二次将纸片折叠使点
与点
重合,折痕与
交于点
;设
的中点为
,第三次将纸片折叠使点
与点
重合,折痕与
交于点O3,… .按上述方法折叠,第n次折叠后的折痕与BD交于点On,
则BOn=

















则BOn=

如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是()


A.(4,8) | B.(5,8) | C.(![]() ![]() | D.(![]() ![]() |
如图,在矩形ABCD中,AB=
,BC=3,将△ABC沿对角线AC折叠,点B恰好落在点P处,CP与AD交于点F,连接BP交AC于点G,交AD于点E,下列结论错误的是()



A.AC="2AP" | B.△PBC是等边三角形 |
C.S△BGC=3S△AGP | D.![]() ![]() |
有两张相同的矩形纸片ABCD和A′B′C′D′,其中AB=3,BC=8.

(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;
(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.

(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;
(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.