- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- + 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为()


A.(0,-![]() | B.(0,-![]() | C.(0,-![]() | D.(0,-![]() |
如图,矩形ABCD中,P为AD上一点,将△ABP沿BP翻折至△EBP,点A与点E重合;
(1)如图1,若AB=10,BC=6,点E落在CD边上,求AP的长;
(2)如图2,若AB=8,BC=6, PE与CD相交于点O,且OE=OD,求AP的长;
(3)如图3,若AB=4,BC=6,点P是AD的中点,求DE的长.
(1)如图1,若AB=10,BC=6,点E落在CD边上,求AP的长;
(2)如图2,若AB=8,BC=6, PE与CD相交于点O,且OE=OD,求AP的长;
(3)如图3,若AB=4,BC=6,点P是AD的中点,求DE的长.

已知:A(0,3),B(3,0),C(3,4)三点,点P(x,﹣0.5x),当△ABP的面积等于△ABC的面积时,则P点的坐标是_____.
如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在两坐标轴上,顶点B的坐标为(4,3),则对角线交点D的坐标为___________

如图,平面直角坐标系中,点A在第一象限,AB⊥x轴于B.AC⊥y轴于C,A(4a,3a),且四边形ABOC的面积为48.

(1)如图1,直接写出点A的坐标;
(2)如图2,点D从O出发以每秒1个单位的速度沿y轴正半轴运动,同时点E从A出发,以每秒2个单位的速度沿射线BA运动,DE交线段AC于F,设运动的时间为t,当S△AEF<S△CDF时,求t的取值范围;
(3)如图3,将线段BC平移,使点B的对应点M恰好落在y轴负半轴上,点C的对应点为N,连BN交y轴轴于P,当OM=3OP时,求点M的坐标.

(1)如图1,直接写出点A的坐标;
(2)如图2,点D从O出发以每秒1个单位的速度沿y轴正半轴运动,同时点E从A出发,以每秒2个单位的速度沿射线BA运动,DE交线段AC于F,设运动的时间为t,当S△AEF<S△CDF时,求t的取值范围;
(3)如图3,将线段BC平移,使点B的对应点M恰好落在y轴负半轴上,点C的对应点为N,连BN交y轴轴于P,当OM=3OP时,求点M的坐标.
将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,
),则点C的坐标是( )



A.(4,2) | B.(2,4) | C.(![]() | D.(3,![]() |
如图所示,已知O为坐标原点,长方形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(-4,8),连接BD,将△ABD沿直线BD翻折至△A
BD,交CD于点

A.![]() (1)求S△BED的面积; (2)求点A ![]() |