- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- + 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
类比下列平面内的三个结论所得的空间内的结论成立的是
①平行于同一直线的两条直线平行;
②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;
③如果一条直线与两条平行直线中的一条相交,则必与另一条相交.
①平行于同一直线的两条直线平行;
②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;
③如果一条直线与两条平行直线中的一条相交,则必与另一条相交.
A.①②③ | B.①③ | C.① | D.②③ |
设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为
.将此结论类比到空间四面体:设四面体
的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=( )


A.![]() | B.![]() |
C.![]() | D.![]() |
在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲
若
为
内部任意一点,连
并延长交对边于
,则
,同理连
、
并延长,分别交对边于
、
,这样可以推出
____________;类似的,若
为四面体
内部任意一点,连
、
、
、
并延长,分别交相对面于
、
、
、
,则
____________.





















平面几何中我们有“垂直于同一条直线的两条直线平行”,试将该命题中的直线(部分或全部)换成平面,写出一个在空间中成立的命题:_________.