刷题首页
题库
高中数学
题干
在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为
▲
上一题
下一题
0.99难度 填空题 更新时间:2020-03-01 08:15:34
答案(点此获取答案解析)
同类题1
在平面几何里,有“若△
ABC
的三边长分别为
a
,
b
,
c
,内切圆半径为
r
,则三角形面积为
S
△
ABC
=
(
a
+
b
+
c
)
r
”,拓展到空间,类比上述结论,“若四面体
ABCD
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,内切球的半径为
r
,则四面体的体积为________”.
同类题2
在平面几何中,若一个
边形存在内切圆,将内切圆的圆心与
边形顶点连接,可将此
边形分割成
个等高的三角形,
边形的周长为
,面积为
,内切圆的半径为
,那么
,类比此方法,若一多面体的体积为
,全面积为
,且此多面体存在内切球,则此内切球的表面积为____.
同类题3
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是( )
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等.
A.①
B.②
C.①②③
D.③
同类题4
命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )
A.
B.
C.
D.
同类题5
直线与圆相切时,圆心与切点连线与直线垂直,由类比推理可知,平面与球相切时的结论为_____________________________________________ .
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比