刷题首页
题库
高中数学
题干
通过类比长方形,由命题“周长为定值
l
的长方形中,正方形的面积最大,最大值为
”,可猜想关于长方体的相应命题为____
上一题
下一题
0.99难度 填空题 更新时间:2020-03-08 08:16:15
答案(点此获取答案解析)
同类题1
在平面几何里,有“若△
ABC
的三边长分别为
a
,
b
,
c
,内切圆半径为
r
,则三角形面积为
S
△
ABC
=
(
a
+
b
+
c
)
r
”,拓展到空间,类比上述结论,“若四面体
ABCD
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,内切球的半径为
r
,则四面体的体积为________”.
同类题2
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是 ( )
①各棱长相等,同一顶点上的任意两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等.
A.①
B.③
C.①②
D..①②③
同类题3
如图1,已知
中,
,点
在斜边
上的射影为点
.
(Ⅰ)求证:
;
(Ⅱ)如图2,已知三棱锥
中,侧棱
,
,
两两互相垂直,点
在底面
内的射影为点
.类比(Ⅰ)中的结论,猜想三棱锥
中
与
,
,
的关系,并证明.
同类题4
如图甲所示,在直角
中,
、
,
是垂足,则有
,该结论称为射影定理.如图乙所示,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比直角三角形中的射影定理,则有
.
同类题5
在平面几何里有射影定理:设三角形ABC的两边AB⊥AC,D是A点在BC上的射影,则AB
2
=BD•BC.拓展到空间,在四面体A-BCD中,AD⊥面ABC,点O是A在面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,得出正确的结论是( )
A.
B.
C.
C.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比