刷题首页
题库
高中数学
题干
设△
ABC
的三边长分别为
a
,
b
,
c
,△
ABC
的面积为
S
,则△
ABC
的内切圆半径为
.将此结论类比到空间四面体:设四面体
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,体积为
V
,则四面体的内切球半径为
r
=( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-02-28 09:48:08
答案(点此获取答案解析)
同类题1
在边长分别为
a, b, c
的三角形
ABC
中,其内切圆半径为
r
,则该三角形面积
S
=
(
a
+
b
+
c
)
r
,将这一结论类比到空间,有:
同类题2
现有一个关于平面图形的命题:如图所示,同一平面内有两个边长都是
a
的正方形,其中一个正方形的某顶点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为
,类比到空间,有两个棱长均为
a
的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为__________.
A.
B.
C.
D.
同类题3
已知结论:“正三角形中心到顶点的距离是到对边中点距离的2倍”.若把该结论推广到空间,则有结论:
同类题4
平面直角坐标系
中任意一条直线可以用一次方程
:
来表示,若
轴,则
;若
轴,则
.类似地,空间直角坐标系
中任意一个平面可以用一次方程
来表示,若
平面
,则( )
A.
B.
C.
D.
同类题5
我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为1的梯形,且当实数
取
上的任意值时,直线
被图1和图2所截得的两线段长始终相等,则图1的面积为
___________
.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比