下面几种是合情推理的是(   )
①由“已知两条直线平行同旁内角互补”,推测“如果是两条平行直线的同旁内角,那么”;
②由“平面三角形的性质”,推测“空间四面体的性质”;
③数列中,由“”推出“”;
④由“数列1,0,1,0,……”推测“这个数列的通项公式”.
A.①②B.②④C.②③D.③④
当前题号:1 | 题型:单选题 | 难度:0.99
和平面解析几何的观点相同,在空间中,空间平面和曲面可以看作是适合某种条件的动点的轨迹,在空间直角坐标系中,空间平面和曲面的方程是一个三原方程.
(1)类比平面解析几何中直线的方程,写出①过点,法向量为的平面的点法式方程;②平面的一般方程;③在轴上的截距分别为的平面的截距式方程.(不需要说明理由)
(2)设为空间中的两个定点,,我们将曲面定义为满足的动点的轨迹,试建立一个适当的空间直角坐标系,求曲面的方程.
(3)对(2)中的曲面,指出和证明曲面的对称性,并画出曲面的直观图.
当前题号:2 | 题型:解答题 | 难度:0.99
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点,且法向量为的直线(点法式)方程为:,化简得.类比以上方法,在空间直角坐标系中,经过点,且法向量为的平面的方程为( )
A.B.
C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
中,若,斜边上的高为,则有结论,运用类比方法,若三棱锥的三条侧棱两两个互相垂直且长度分别为,三棱锥的直角顶点到底面的高为,则有_____
当前题号:4 | 题型:填空题 | 难度:0.99
已知为三条不同的直线,给出如下两个命题:①若,则;②若,则.试类比以上某个命题,写出一个正确的命题:设为三个不同的平面,__________.
当前题号:5 | 题型:填空题 | 难度:0.99
类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:
①垂直于同一个平面的两条直线互相平行;
②垂直于同一条直线的两条直线互相平行;
③垂直于同一个平面的两个平面互相平行;
④垂直于同一条直线的两个平面互相平行.
其中正确的结论是( )
A.①②B.②③C.①④D.③④
当前题号:6 | 题型:单选题 | 难度:0.99
在平面几何中,有这样一个定理:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比.请你类比写出在立体几何中,有关四面体的相似性质: .
当前题号:7 | 题型:填空题 | 难度:0.99
面积为的平面凸四边形的第条边的边长记为,此四边形内任一点到第条边的距离为,若,则;根据以上性质,体积为的三棱锥的第个面的面积为,此三棱锥内任一点个面的距离为,若,则  
当前题号:8 | 题型:填空题 | 难度:0.99
在平面上,设是三角形ABC三条边上的高.P为三角形内任一点,P到相应三边的距离分别为,我们可以得到结论:类比到空间中的四面体内任一点p, 其中为四面体四个面上的高,为p点到四个面的距离,我们可以得到类似结论为
当前题号:9 | 题型:填空题 | 难度:0.99
由“直角三角形两直角边的长分别为,将其补成一个矩形,则根据矩形的对角线可求得该直角三角形外接圆的半径”,对于“若三棱锥三条侧棱两两互相垂直,侧棱长分别为”,类比上述的处理方法,可得三棱锥的外接球半径______.
当前题号:10 | 题型:填空题 | 难度:0.99