- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知三角形的三边分别为
,内切圆的半径为
,则三角形的面积为
;四面体的四个面的面积分别为
,内切球的半径为
.类比三角形的面积可得四面体的体积为__________.





对于问题“已知关于
的不等式
的解集为
,解关于
的不等式
的”,给出一种解法:由
的解集为
,得
的解集为
.即关于
的不等式
的解集为
.类比上述解法,若关于
的不等式
的解集为
,则关于
的不等式
的解集为_____.

















命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )

A.![]() | B.![]() | C.![]() | D.![]() |
定义一种运算“*”:对于自然数n满足以下运算性质:
(1)1*1=1;(2)(n+1)*1=n*1,则n*1 ( )
(1)1*1=1;(2)(n+1)*1=n*1,则n*1 ( )
A.![]() | B.![]() | C.1 | D.![]() |
已知
-
>1,过点P(x0,y0)作一直线与双曲线
-
=1相交且仅有一个公共点,则该直线的斜率恰为双曲线的两条渐近线的斜率±
.类比此思想,已知y0<
,过点P(x0,y0)(x0>0)作一条不垂直于x轴的直线l与曲线y=
相交且仅有一个公共点,则该直线l的斜率为________.







我们把满足勾股定理的正整数称为勾股数,当
为大于1的奇数时,可通过等式
构造勾股数
.类似地,当
为大于2的偶数时,下列三个数为勾股数的是( )




A.![]() | B.![]() |
C.![]() | D.![]() |
为缓解城市道路交通压力,促进城市道路交通有序运转,减少机动车尾气排放对空气质量的影响,西安市人民政府决定:自2019年3月18日至2020年3月13日在相关区域实施工作日机动车尾号限行交通管理措施.已知每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C 两辆车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是( )
A.今天是周四 | B.今天是周六 | C.A车周三限行 | D.C车周五限行 |
如图所示,在三棱锥S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA,SB,SC和底面ABC所成的角分别为α1,α2,α3,△SBC,△SAC,△SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间图形的一个猜想是_________________.

在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:
=
+
,那么在四面体A-BCD中,类比上述结论,你能得到怎样的猜想,并说明理由.


