刷题首页
题库
高中数学
题干
如图所示,在三棱锥S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA,SB,SC和底面ABC所成的角分别为α
1
,α
2
,α
3
,△SBC,△SAC,△SAB的面积分别为S
1
,S
2
,S
3
,类比三角形中的正弦定理,给出空间图形的一个猜想是_________________.
上一题
下一题
0.99难度 填空题 更新时间:2016-11-29 03:55:15
答案(点此获取答案解析)
同类题1
命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )
A.
B.
C.
D.
同类题2
对于命题:如果
是线段
上一点,则
;将它类比到平面的情形是:若
是△
内一点,有
;将它类比到空间的情形应该是:若
是四面体
内一点,则有__________________________.
同类题3
在平面几何里,有勾股定理:“设
的两边AB、AC互相垂直,则
.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC 、ACD、ADB两两互相垂直,则
”.
同类题4
如图1,在
中,
,
,
是垂足,则
,该结论称为射影定理.如图2,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比射影定理,可以得到结论:__________.
同类题5
下面几种是合情推理的是( )
①由“已知两条直线平行同旁内角互补”,推测“如果
和
是两条平行直线的同旁内角,那么
”;
②由“平面三角形的性质”,推测“空间四面体的性质”;
③数列
中,由“
”推出“
”;
④由“数列1,0,1,0,……”推测“这个数列的通项公式
”.
A.①②
B.②④
C.②③
D.③④
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比