刷题首页
题库
高中数学
题干
在
R
t△
ABC
中,
AB
⊥
AC
,
AD
⊥
BC
于
D
,求证:
=
+
,那么在四面体
A
-
BCD
中,类比上述结论,你能得到怎样的猜想,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 08:32:24
答案(点此获取答案解析)
同类题1
如图1,在
中,
,
,
是垂足,则
,该结论称为射影定理.如图2,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比射影定理,可以得到结论:__________.
同类题2
类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长之间满足关系:
.若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为
.
同类题3
我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:
①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( )
A.4
B.2
C.3
D.1
同类题4
如图1,已知
中,
,点
在斜边
上的射影为点
.
(Ⅰ)求证:
;
(Ⅱ)如图2,已知三棱锥
中,侧棱
,
,
两两互相垂直,点
在底面
内的射影为点
.类比(Ⅰ)中的结论,猜想三棱锥
中
与
,
,
的关系,并证明.
同类题5
现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是
a
的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为
.类比到空间,有两个棱长均为
a
的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为
.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比