- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理概念辨析
- + 数与式中的归纳推理
- 图与形中的归纳推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
语文中有回文句,如:“上海自来水来自海上”,倒过来读完全一样。数学中也有类似现象,如:88,454,7337,43534等,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”!
二位的回文数有11,22,33,44,55,66,77,88,99,共9个;
三位的回文数有101,111,121,131,…,969,979,989,999,共90个;
四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;
由此推测:11位的回文数总共有_________个.
二位的回文数有11,22,33,44,55,66,77,88,99,共9个;
三位的回文数有101,111,121,131,…,969,979,989,999,共90个;
四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;
由此推测:11位的回文数总共有_________个.
洛萨
科拉茨
Collatz,
是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半
即
;如果n是奇数,则将它乘3加
即
,不断重复这样的运算,经过有限步后,一定可以得到
如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,
对科拉茨
猜想,目前谁也不能证明,更不能否定
现在请你研究:如果对正整数
首项
按照上述规则施行变换
注:1可以多次出现
后的第八项为1,则n的所有可能的取值为______.
















如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完
片金片总共需要的次数为
,可推得
.求移动次数的程序框图模型如图所示,则输出的结果是( )







A.1022 | B.1023 | C.1024 | D.1025 |
给出以下四个式子:
①
;
②
;
③
;
④
.
(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个, 求出这个常数;
(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.
①

②

③

④

(1)已知所给各式都等于同一个常数,试从上述四个式子中任选一个, 求出这个常数;
(2)分析以上各式的共同特点,写出能反应一般规律的等式,并对等式正确性作出证明.
古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于
1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )



A.![]() | B.![]() |
C.![]() | D.![]() |