给正有理数,且不同时成立),按以下规则排列:① 若,则排在前面;② 若,且,则排在的前面,按此规则排列得到数列.
(例如:).
(1)依次写出数列的前10项;
(2)对数列中小于1的各项,按以下规则排列:①各项不做化简运算;②分母小的项排在前面;③分母相同的两项,分子小的项排在前面,得到数列,求数列的前10项的和,前2019项的和
(3)对数列中所有整数项,由小到大取前2019个互不相等的整数项构成集合的子集满足:对任意的,有,求集合中元素个数的最大值.
当前题号:1 | 题型:解答题 | 难度:0.99
定义集合与集合之差是由所有属于且不属于的元素组成的集合,记作 且.已知集合
(Ⅰ)若集合,写出集合的所有元素;
(Ⅱ)从集合选出10个元素由小到大构成等差数列,其中公差的最大值和最小值分别是多少?公差为的等差数列各有多少个?
(Ⅲ)设集合,且集合中含有10个元素,证明:集合中必有10个元素组成等差数列.
当前题号:2 | 题型:解答题 | 难度:0.99
已知由自然数组成的元集合,非空集合,且对任意的,都有.
(1)当时,求所有满足条件的集合;
(2)当时,求所有满足条件的集合的元素总和;
(3)定义一个集合的“交替和”如下:按照递减的次序重新排列该集合的元素,然后从最大数开始交替地减、加后继的数.例如集合的交替和是,集合的交替和为.当时,求所有满足条件的集合的“交替和”的总和.
当前题号:3 | 题型:解答题 | 难度:0.99