- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
根据上表可得回归直线方程
,其中
,据此估计,该社区一户收入为15万元家庭年支出为( )
收入![]() | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出![]() | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
根据上表可得回归直线方程


A.11.4万元 | B.11.8万元 | C.12.0万元 | D.12.2万元 |
陕西关中的秦腔表演朴实,粗犷,细腻,深刻,再有电子布景的独有特效,深得观众喜爱.戏曲相关部门特意进行了“喜爱看秦腔”调查,发现年龄段与爱看秦腔的人数比存在较好的线性相关关系,年龄在
,
,
,
的爱看人数比分别是0.10,0.18,0.20,0.30.现用各年龄段的中间值代表年龄段,如42代表
.由此求得爱看人数比
关于年龄段
的线性回归方程为
.那么,年龄在
的爱看人数比为( )









A.0.42 | B.0.39 | C.0.37 | D.0.35 |
从某居民区随机抽取
个家庭,获得第
个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)
的数据资料,算得
,
i,
,
.
(1)求家庭的月储蓄
对月收入
的线性回归方程
;
(2)判断变量
与
之间是正相关还是负相关;
(3)若该居民区某家庭月收入为
千元,预测该家庭的月储蓄.
附:




的数据资料,算得




(1)求家庭的月储蓄



(2)判断变量


(3)若该居民区某家庭月收入为

附:

《中华人民共和国道路交通安全法》第
条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第
条规定:对不礼让行人的驾驶员处以扣
分,罚款
元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
(1)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(2)预测该路口
月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,参考数据:
.




月份 | ![]() | ![]() | ![]() | ![]() | ![]() |
违章驾驶员人数 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)请利用所给数据求违章人数




(2)预测该路口

参考公式:


至
年底,我国发明专利申请量已经连续
年位居世界首位,下表是我国
年至
年发明专利申请量以及相关数据.

注:年份代码
~
分别表示
~
.
(1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?
(2)建立
关于
的回归直线方程(精确到
),并预测我国发明专利申请量突破
万件的年份.
参考公式:回归直线的斜率和截距的最小二乘法估计分别为
,





注:年份代码




(1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?
(2)建立




参考公式:回归直线的斜率和截距的最小二乘法估计分别为


近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
依据表格数据,得到下面的散点图及一些统计量的值.

(1)根据散点图和表中数据,此研究机构对工业增加值
(万亿元)与年份序号
的回归方程类型进行了拟合实验,研究人员甲采用函数
,其拟合指数
;研究人员乙采用函数
,其拟合指数
;研究人员丙采用线性函数
,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数
与拟合指数
满足关系
).
(2)根据(1)的判断结果及统计值,建立
关于
的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本
的相关系数
,
,
,
.
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值![]() | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
![]() | ![]() | ![]() | ![]() | ![]() |
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |

(1)根据散点图和表中数据,此研究机构对工业增加值










(2)根据(1)的判断结果及统计值,建立


(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本






随着时代的进步、科技的发展,“网购”已发展成为一种新的购物潮流,足不出户就可以在网上买到自己想要的东西,而且两三天就会送到自己的家门口,某网店统计了2015年至2019年(2015年时t=1)在该网店的购买人数
(单位:百人)的数据如下表:
(1)依据表中给出的数据,求出y关于t的回归直线方程;
(2)根据(1)中的回归直线方程,预测2020年在该网店购物的人数是否有可能破万?
附:参考公式:回归方程
中:
,参考数据:
.

年份(t) | 1 | 2 | 3 | 4 | 5 |
![]() | 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,求出y关于t的回归直线方程;
(2)根据(1)中的回归直线方程,预测2020年在该网店购物的人数是否有可能破万?
附:参考公式:回归方程



某公司为了预测下月产品销售情况,找出了近7个月的产品销售量
(单位:万件)的统计表:
但其中数据污损不清,经查证
,
,
.
(1)请用相关系数说明销售量
与月份代码
有很强的线性相关关系;
(2)求
关于
的回归方程(系数精确到0.01);
(3)公司经营期间的广告宣传费
(单位:万元)(
),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)
参考公式及数据:
,相关系数
,当
时认为两个变量有很强的线性相关关系,回归方程
中斜率和截距的最小二乘估计公式分别为
,
.

月份代码![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售量![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
但其中数据污损不清,经查证



(1)请用相关系数说明销售量


(2)求


(3)公司经营期间的广告宣传费


参考公式及数据:






下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(1)请根据上表提供的数据,用最小二乘法求出



(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:

某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:

若
线性相关,线性回归方程为
,估计该制药厂6月份生产甲胶囊产量为( )

若


A.![]() | B.![]() | C.![]() | D.![]() |