足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
年份x
2014
2015
2016
2017
2018
足球特色学校y(百个)
0.30
0.60
1.00
1.40
1.70
 
(1)根据上表数据,计算yx的相关系数r,并说明yx的线性相关性强弱.
(已知:,则认为yx线性相关性很强;,则认为yx线性相关性一般;,则认为yx线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:

.
当前题号:1 | 题型:解答题 | 难度:0.99
一种室内植物的株高(单位:)与与一定范围内的温度(单位:)有,现收集了该种植物的组观测数据,得到如图所示的散点图:

现根据散点图利用建立关于的回归方程,令,得到如下数据:








 










 
的相关系数分别为,其中
(1)用相关系数说明哪种模型建立关于的回归方程更合适;
(2)(i)根据(1)的结果及表中数据,求关于的回归方程;
(ii)已知这种植物的利润(单位:千元)与的关系为,当何值时,利润的预报值最大.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:
相关系数
当前题号:2 | 题型:解答题 | 难度:0.99
某公司为确定下一年度投入某种产品的宜传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
x(万元)
2
4
5
3
6
y(单位:t
2.5
4
4.5
3
6
 
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程.
(2)已知这种产品的年利润(万元)与xy的关系为根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,预测该产品的年销售量及年利润;
②估计该产品的年利润与年宣传费的比值的最大值.
附:回归方程中的斜率和截距的最小二乘估计公式分别为.
参考数据:.
当前题号:3 | 题型:解答题 | 难度:0.99
随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
x
1
2
3
4
5
y(万人)
20
50
100
150
180
 
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从)若掷出偶数遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程中,.
当前题号:4 | 题型:解答题 | 难度:0.99
某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照,…,分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)
(Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);
(Ⅱ)求用户用水费用(元)关于月用水量(吨)的函数关系式;
(Ⅲ)如图2是该县居民李某2017年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某2017年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.
当前题号:5 | 题型:解答题 | 难度:0.99
为了实现绿色发展,避免浪费能源,耨市政府计划对居民用电采用阶梯收费的方法.为此,相关部门在该市随机调查了20户居民六月份的用电量(单位:)和家庭收入(单位:万元),以了解这个城市家庭用电量的情况.
用电量数据如下:18,63,72,82,93,98,106,110,118,130,134,139,147,163,180,194,212,237,260,324.
对应的家庭收入数据如下:0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8.

(1)根据国家发改委的指示精神,该市计划实施3阶阶梯电价,使75%的用户在第一档,电价为0.56元/的用户在第二档,电价为0.61元/的用户在第三档,电价为0.86元/;试求出居民用电费用与用电量间的函数关系式;
(2)以家庭收入为横坐标,电量为纵坐标作出散点图(如图),求关于的回归直线方程(回归直线方程的系数四舍五入保留整数)
(3)小明家的月收入7000元,按上述关系,估计小明家月支出电费多少元?
参考数据:
参考公式:一组相关数据的回归直线方程的斜率和截距的最小二乘法估计分别为.,其中为样本均值.
当前题号:6 | 题型:解答题 | 难度:0.99