- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:
,则认为y与x线性相关性很强;
,则认为y与x线性相关性一般;
,则认为y与x线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:
,


,

.
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:



(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:






一种室内植物的株高
(单位:
)与与一定范围内的温度
(单位:
)有,现收集了该种植物的
组观测数据,得到如图所示的散点图:

现根据散点图利用
或
建立
关于
的回归方程,令
,
,得到如下数据:
且
与
的相关系数分别为
、
,其中
.
(1)用相关系数说明哪种模型建立
关于
的回归方程更合适;
(2)(i)根据(1)的结果及表中数据,求
关于
的回归方程;
(ii)已知这种植物的利润
(单位:千元)与
、
的关系为
,当
何值时,利润的预报值最大.
附:对于样本
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
,
相关系数
,
.






现根据散点图利用






![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
且





(1)用相关系数说明哪种模型建立


(2)(i)根据(1)的结果及表中数据,求


(ii)已知这种植物的利润





附:对于样本




相关系数


某公司为确定下一年度投入某种产品的宜传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程.
(2)已知这种产品的年利润
(万元)与x,y的关系为
根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,预测该产品的年销售量及年利润;
②估计该产品的年利润与年宣传费的比值的最大值.
附:回归方程
中的斜率和截距的最小二乘估计公式分别为

.
参考数据:
.
x(万元) | 2 | 4 | 5 | 3 | 6 |
y(单位:t) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程.
(2)已知这种产品的年利润


①当年宣传费为10万元时,预测该产品的年销售量及年利润;
②估计该产品的年利润与年宣传费的比值的最大值.
附:回归方程




参考数据:


随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是
,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从
到
)若掷出偶数遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为
,试证明
是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.
附:在线性回归方程
中,
.
x | 1 | 2 | 3 | 4 | 5 |
y(万人) | 20 | 50 | 100 | 150 | 180 |
(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;
(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是








附:在线性回归方程


某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照
,
,…,
分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)
(Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);
(Ⅱ)求用户用水费用
(元)关于月用水量
(吨)的函数关系式;
(Ⅲ)如图2是该县居民李某2017年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
.若李某2017年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.




(图1) (图2)
(Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);
(Ⅱ)求用户用水费用


(Ⅲ)如图2是该县居民李某2017年1~6月份的月用水费



为了实现绿色发展,避免浪费能源,耨市政府计划对居民用电采用阶梯收费的方法.为此,相关部门在该市随机调查了20户居民六月份的用电量(单位:
)和家庭收入(单位:万元),以了解这个城市家庭用电量的情况.
用电量数据如下:18,63,72,82,93,98,106,110,118,130,134,139,147,163,180,194,212,237,260,324.
对应的家庭收入数据如下:0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8.

(1)根据国家发改委的指示精神,该市计划实施3阶阶梯电价,使75%的用户在第一档,电价为0.56元/
;
的用户在第二档,电价为0.61元/
;
的用户在第三档,电价为0.86元/
;试求出居民用电费用
与用电量
间的函数关系式;
(2)以家庭收入
为横坐标,电量
为纵坐标作出散点图(如图),求
关于
的回归直线方程(回归直线方程的系数四舍五入保留整数)
;
(3)小明家的月收入7000元,按上述关系,估计小明家月支出电费多少元?
参考数据:
,
,
,
,
.
参考公式:一组相关数据
的回归直线方程
的斜率和截距的最小二乘法估计分别为.
,
,其中
为样本均值.

用电量数据如下:18,63,72,82,93,98,106,110,118,130,134,139,147,163,180,194,212,237,260,324.
对应的家庭收入数据如下:0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8.

(1)根据国家发改委的指示精神,该市计划实施3阶阶梯电价,使75%的用户在第一档,电价为0.56元/







(2)以家庭收入





(3)小明家的月收入7000元,按上述关系,估计小明家月支出电费多少元?
参考数据:





参考公式:一组相关数据




