在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计时,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差.某高二班主任为了了解学生的偏科情况,对学生数学偏差(单位:分)与历史偏差(单位:分)之间的关系进行学科偏差分析,决定从全班52位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号
1
2
3
4
5
6
7
8
数学偏差
20
15
13
3
2



历史偏差








 
(1)已知之间具有线性相关关系,求关于的线性回归方程
(2)若这次考试该班数学平均分为118分,历史平均分为,试预测数学成绩126分的同学的历史成绩.
附:参考公式与参考数据
当前题号:1 | 题型:解答题 | 难度:0.99
已知两个线性相关变量的数据如下表:

1
2
3
4
5

1
2
4
6
7
 
(1)求出关于的线性回归方程;
(2)预测当的值.
参考公式:.
当前题号:2 | 题型:解答题 | 难度:0.99
近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示yx呈线性相关关系.

(1)求出y关于x的回归直线方程
(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?
参考公式:对于一组数据,…,,其回归方程的斜率和截距的最小二乘估计分别为.
当前题号:3 | 题型:解答题 | 难度:0.99
已知变量xy的取值如下表:
x
1
2
3
4
5
y
10
15
30
45
50
 
由散点图分析可知yx线性相关,且求得回归直线的方程为,据此可预测:当时,y的值约为(   )
A.63B.74C.85D.96
当前题号:4 | 题型:单选题 | 难度:0.99
某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x
2011
2012
2013
2014
2015
储蓄存款y(千亿元)
5
6
7
8
10
 
为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
 
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中
当前题号:5 | 题型:解答题 | 难度:0.99
为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
第x次
1
2
3
4
5
分数y(满足150)
145
83
95
72
110
 

B类
第x次
1
2
3
4
5
分数y(满足150)
85
93
90
76
101
 

C类
第x次
1
2
3
4
5
分数y(满足150)
85
92
101
100
112
 

(1)经计算己知A,B的相关系数分别为.,请计算出C学生的的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为,利用线性回归直线方程预测该生第十次的成绩.
附相关系数,线性回归直线方程
当前题号:6 | 题型:解答题 | 难度:0.99
某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量方法,具体如下;第一阶梯,每户居民每月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民用水量超过12吨,超过部分的价格为8元/吨,为了了解全是居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照(全市居民月用水量均不超过16吨)分成8组,制成了如图1所示的频率分布直方图.

(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
当前题号:7 | 题型:解答题 | 难度:0.99
若身高x(单位:m)与体重y(单位:kg)之间的回归直线方程为),样本点的中心为,当身高为1.7m时,预计体重为______kg.
当前题号:8 | 题型:填空题 | 难度:0.99
某单位共有10名员工,他们某年的收入如下表:
员工编号
1
2
3
4
5
6
7
8
9
10
年薪(万元)
4
4.5
6
5
6.5
7.5
8
8.5
9
51
 
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程中系数计算公式分别为:,其中为样本均值.
当前题号:9 | 题型:解答题 | 难度:0.99