- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种产品的宣传费
(单位:万元)与销售额
(单位:万元)之间有如下对应数据:
(1)求线性回归方程.
(2)试预测宣传费为10万元时,销售额为多少?
参考数值:
,


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
(1)求线性回归方程.
(2)试预测宣传费为10万元时,销售额为多少?
参考数值:


为了解某地区某种农产品的年产量
(单位:吨)对价格
(单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如表:
已知
和
具有线性相关关系.
(1)求
关于
的线性回归方程
;
(2)若年产量为4.5吨,试预测该农产品的价格.
(参考公式:
)


x | 1 | 2 | 3 | 4 | 5 |
y | 8 | 6 | 5 | 4 | 2 |
已知


(1)求



(2)若年产量为4.5吨,试预测该农产品的价格.
(参考公式:

经过对中学生记忆能力x和识图能力y进行统计分析,得到如下数据:
由表中数据,求得线性回归方程为
,若某中学牛的记忆能力为14,则该中学生的识图能力为( )
记忆能力![]() | 4 | 6 | 8 | 10 |
识图能力![]() | 3 | 5 | 6 | 8 |
由表中数据,求得线性回归方程为

A.7 | B.9.5 | C.11.1 | D.12 |
“工资条里显红利,个税新政人民心”,随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段,某
从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁~35岁(2009年~2018年)之间各月的月平均收入
(单位:千元)的散点图:

(1)由散点图知,可用回归模型
拟合
与
的关系,试根据有关数据建立
关于
的回归方程;
(2)如果该
从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入为月收入,根据新旧个税政策,估计他36岁时每个月少缴交的个人所得税.
附注:
参考数据
,
,
,
,
,
,
,其中
;取
,
参考公式:回归方程
中斜率和截距的最小二乘估计分别为
,
新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:



(1)由散点图知,可用回归模型





(2)如果该

附注:
参考数据










参考公式:回归方程



新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:
| 旧个税税率表(个税起征点3500元) | 新个税税率表(个税起征点5000元) | ||
税缴级数 | 每月应纳税所得额(含税) =收入-个税起征点 | 税率 (%) | 每月应纳税所得额(含税) =收入一个税起征点-专项附加扣除 | 税率 (%) |
1 | 不超过1500元的部分 | 3 | 不超过3000元的部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 超过12000元至25000元的部分 | 20 |
4 | 超过9000元至35000元的部分 | 25 | 超过25000元至35000元的部分 | 25 |
5 | 超过35000元155000元的部分 | 30 | 超过35000元至55000元的部分 | 30 |
已知关于两个随机变量
的一组数据如下表所示,且
成线性相关,其回归直线方程为
,则当变量
时,变量
的预测值应该是_________ .





![]() | 2 | 3 | 4 | 5 | 6 |
![]() | 4 | 6 | 7 | 10 | 13 |
某城市新开大型楼盘,该楼盘位于城市的黄金地段,预售场面异常火爆,故该楼盘开发商采用房屋竞价策略,竞价的基本规则是:①所有参与竞价的人都是网络报价,每个人并不知晓其他人的报价,也不知道参与当期竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期房屋配额,按照竞拍人的出价从高到低分配名额。某人拟参加2019年10月份的房屋竞拍,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如表):
(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数y(万人)与月份编号t之间的相关关系。请用最小二乘法求y关于t的线性回归方程:
,并预测2019年10月份(几份编号为6)参与竞拍的人数;
(2)某市场调研机构对200位拟参加2019年10月份房屋竞价人员的报价进行了一个抽样调查,得到如下图所示的频数表:
(i)求这200位竞拍人员报价X的平均值
和样本方差
(同一区间的报价用该价格区间的中点值代替);
(ii)假设所有参与竞价人员的报价X可视为服从正态分布
,且μ与
可分别由(i)中所求的样本平均数
及
估计。若2019年10月份计划发放房源数量为3174,请你合理预测(需说明理由)竞拍的最低成交价。
参考公式及数据:
①回归方程
,其中
,
②
;
,
③若随机变量Z服从正态分布
,则
,
,
.
月份 | 2019.05 | 2019.06 | 2019.07 | 2019.08 | 2019.09 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
竞拍人数![]() | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数y(万人)与月份编号t之间的相关关系。请用最小二乘法求y关于t的线性回归方程:

(2)某市场调研机构对200位拟参加2019年10月份房屋竞价人员的报价进行了一个抽样调查,得到如下图所示的频数表:
报价区间(万元/![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位竞拍人员报价X的平均值


(ii)假设所有参与竞价人员的报价X可视为服从正态分布




参考公式及数据:
①回归方程


②



③若随机变量Z服从正态分布




某企业为了提高企业利润,从2014年至2018年每年都对生产环节的改进进行投资,投资金额
(单位:万元)与年利润增长量
(单位:万元)的数据如表:
(1)记
年利润增长量
投资金额,现从2014年至2018年这5年中抽出两年进行调查分析,求所抽两年都是
万元的概率;
(2)请用最小二乘法求出
关于
的回归直线方程;如果2019年该企业对生产环节改进的投资金额为10万元,试估计该企业在2019年的年利润增长量为多少?
参考公式:
,
;
参考数据:
,
.


年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额![]() | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
年利润增长量![]() | 6.0 | 7.0 | 9.0 | 11.0 | 12.0 |
(1)记



(2)请用最小二乘法求出


参考公式:


参考数据:


某地实施乡村振兴战略,对农副产品进行深加工以提高产品附加值,已知某农产品成本为每件3元,加工后的试营销期间,对该产品的价格与销售量统计得到如下数据:
数据显示单价x与对应的销量y满足线性相关关系.
(1)求销量y(件)关于单价x(元)的线性回归方程
;
(2)根据销量y关于单价x的线性回归方程,要使加工后收益P最大,应将单价定为多少元?(产品收益=销售收入-成本).
参考公式:
=
=
,
单价x(元) | 6 | 6.2 | 6.4 | 6.6 | 6.8 | 7 |
销量y(万件) | 80 | 74 | 73 | 70 | 65 | 58 |
数据显示单价x与对应的销量y满足线性相关关系.
(1)求销量y(件)关于单价x(元)的线性回归方程

(2)根据销量y关于单价x的线性回归方程,要使加工后收益P最大,应将单价定为多少元?(产品收益=销售收入-成本).
参考公式:




为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
经计算:
,
,
,
,
,
,
,其中
,
分别为试验数据中的温度和死亡株数,
.
(1)若用线性回归模型,求
关于
的回归方程
(结果精确到0.1);
(2)若用非线性回归模型求得
关于
的回归方程
,且相关指数为
.
(i)试与(1)中的回归模型相比,用
说明哪种模型的拟合效果更好;
(ii)用拟合效果好的模型预测温度为
时该紫甘薯死亡株数(结果取整数).
附:对于一组数据
,
,
,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
;相关指数为:
.
温度![]() ![]() | 21 | 23 | 24 | 27 | 29 | 32 |
死亡数![]() | 6 | 11 | 20 | 27 | 57 | 77 |
经计算:










(1)若用线性回归模型,求



(2)若用非线性回归模型求得




(i)试与(1)中的回归模型相比,用

(ii)用拟合效果好的模型预测温度为

附:对于一组数据








某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量
(百件)与月份
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程
,其中
,
.
月份![]() | 1 | 2 | 3 | 4 | 5 |
销量![]() | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量





(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程


