- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量
表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量
表示,数据如下表:
(Ⅰ)求
关于
的线性回归方程(计算结果精确到0.01);
(Ⅱ)利用(I)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);

(Ⅲ)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.
附:回归方程
中斜率和截距的最小二乘法估计公式分别为


(Ⅰ)求


(Ⅱ)利用(I)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);

(Ⅲ)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.
附:回归方程


某服装批发市场1–5月份的服装销售量x与利润y的统计数据如表:
(1)从这五个月的利润中任选2个,分别记为m,n,求事件“m,n均不小于30”的概率;
(2)已知销售量x与利润y大致满足线性相关关系,请根据前4个月的数据,求出y关于x的线性回归方程
x+
;
(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想?
参考公式:
,
月份 | 1 | 2 | 3 | 4 | 5 |
销售量x(万件) | 3 | 6 | 4 | 7 | 8 |
利润y(万元) | 19 | 34 | 26 | 41 | 46 |
(1)从这五个月的利润中任选2个,分别记为m,n,求事件“m,n均不小于30”的概率;
(2)已知销售量x与利润y大致满足线性相关关系,请根据前4个月的数据,求出y关于x的线性回归方程


(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想?
参考公式:


某种商品价格与该商品日需求量之间的几组对照数据如下表:

(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程
,其中
=
,
.

(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程




某产品在某零售摊位的零售价
(单位:元)与每天的销售量
(单位:个)的统计资料如下表所示,

由表可得回归直线方程
中的
,据此模型预测零售价为20元时,每天的销售量为()



由表可得回归直线方程


A.26个 | B.27个 | C.28个 | D.29个 |
某单位为了了解用电量
度与气温
之间的关系,随机统计了某
天的用电量与当天气温.
由表中数据得回归直线方程
中
,据此预测当气温为5℃时,用电量的度数约为____.



气温(℃) | 14 | 12 | 8 | 6 |
用电量(度) | 22 | 26 | 34 | 38 |
由表中数据得回归直线方程


柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为
的雾霾天数.
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出



(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为


某校
位同学的数学与英语成绩如下表所示:
将这
位同学的两科成绩绘制成散点图如下:

(1)根据该校以往的经验,数学成绩
与英语成绩
线性相关.已知这
名学生的数学平均成绩为
,英语平均成绩为
.考试结束后学校经过调查发现学号为
的
同学与学号为
的
同学(分别对应散点图中的
、
)在英语考试中作弊,故将两位同学的两科成绩取消,取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;
(2)取消两位作弊同学的两科成绩后,求数学成绩
与英语成绩
的线性回归方程
,并据此估计本次英语考试学号为
的同学如果没有作弊的英语成绩(结果保留整数).
附:
位同学的两科成绩的参考数据:
,
.
参考公式:
,
.

学号 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
数学成绩 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
英语成绩 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
学号 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
数学成绩 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
英语成绩 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
将这


(1)根据该校以往的经验,数学成绩











(2)取消两位作弊同学的两科成绩后,求数学成绩




附:



参考公式:


为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
根据上表可得回归直线方程
,其中
,
元,据此估计,该社区一户收入为16万元家庭年支出为( )
收入![]() | 8.3 | 8.6 | 9.9 | 11.1 | 12.1 |
支出![]() | 5.9 | 7.8 | 8.1 | 8.4 | 9.8 |
根据上表可得回归直线方程



A.12.68万元 | B.13.88万元 | C.12.78万元 | D.14.28万元 |
某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量
(单位:千瓦·时)与气温
(单位:℃)之间的关系,随机选取了
天的用电量与当天气温,并制作了以下对照表:
由表中数据得线性回归方程:
,则由此估计:当某天气温为
℃时,当天用电量约为( )



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
由表中数据得线性回归方程:


A.![]() | B.![]() |
C.![]() | D.![]() |