- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
电容器充电后,电压达到100 V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=Aebt(b<0)表示,现测得时间t(s)时的电压U(V)如下表:
t(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
U(V) | 100 | 75 | 55 | 40 | 30 | 20 | 15 | 10 | 10 | 5 | 5 |
试求:电压U对时间t的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)
某产品的广告费用x与销售额y的统计数据如下表:
根据上表可得线性回归方程
中的
为9.4,据此模型推测,当广告费用为6万元时,销售额为( )
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得线性回归方程


A.65.5万元 |
B.67.7万元 |
C.69.7万元 |
D.72.0万元 |
某公司经营一批进价为每件400元的商品,在市场调查时发现,此商品的销售单价x(元)与日销售量y(件)之间的关系如下表所示:
(1)求y关于x的回归直线方程.
(2)借助回归直线方程,预测销售单价为多少元时,日利润最大?
x/元 | 500 | 600 | 700 | 800 | 900 |
y/件 | 10 | 8 | 9 | 6 | 1 |
(1)求y关于x的回归直线方程.
(2)借助回归直线方程,预测销售单价为多少元时,日利润最大?
某个体服装店经营某种服装,该服装店每天所获利润y(元)与每天售出这种服装件数x之间的一组数据关系如下表:
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 74 | 81 | 89 | 90 | 91 |
(1)求利润y与每天售出件数x之间的回归方程 (回归直线的斜率用分数表示).
(2)若该服装店某天销售服装13件,估计可获利润多少元?
为分析学生入学时的数学成绩对高一年级数学学习的影响,在高一年级学生中随机抽取10名学生,统计他们入学时的数学成绩和高一期末的数学成绩,如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
入学成绩x(分) | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
高一期末 成绩y(分) | 65 | 78 | 52 | 82 | 92 | 89 | 73 | 98 | 56 | 75 |
(1)求相关系数r;
(2)求y关于x的线性回归方程;
(3)若某学生入学时的数学成绩为80分,试估计他高一期末的数学成绩.
在某次试验中,两个试验数据x,y的统计结果如下面的表格1所示.
表格1

(1)在给出的坐标系中画出数据x,y的散点图.
(2)补全表格2,根据表格2中的数据和公式
求下列问题.
①求出y关于x的回归直线方程
中的
.
②估计当x=10时,
的值是多少?
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 4 | 5 |
表格1

(1)在给出的坐标系中画出数据x,y的散点图.
(2)补全表格2,根据表格2中的数据和公式

①求出y关于x的回归直线方程


②估计当x=10时,

表格2
序号 | x | y | x2 | xy |
1 | 1 | 2 | 1 | 2 |
2 | 2 | 3 | 4 | 6 |
3 | 3 | 4 | 9 | 12 |
4 | 4 | 4 | 16 | 16 |
5 | 5 | 5 | 25 | 25 |
∑ |
|
|
|
|
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程求回归直线方程
.
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
单价x(元) | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量y(件) | 100 | 94 | 93 | 90 | 85 | 78 |
(1)求回归直线方程求回归直线方程

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
某公司的广告费支出x(万元)与销售额y(万元)之间有下表所示的对应数据,由资料显示y对x呈线性相关关系,根据下表提供的数据得到回归方程
中的
=6.5,
预测销售额为115万元时,约需________万元广告费.


x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
预测销售额为115万元时,约需________万元广告费.