- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2组数据的概率.
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程.
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(2)中求出的线性回归方程,预测记忆力为14的学生的判断力.
为了分析某个高三学生的学习状态,对其下一个阶段的学习提出指导性建议,某老师现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该学生7次考试的成绩.

(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.
(2)已知该学生的物理成绩y与数学成绩x是线性相关的,若该学生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该学生在学习数学、物理上的合理建议.

(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.
(2)已知该学生的物理成绩y与数学成绩x是线性相关的,若该学生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该学生在学习数学、物理上的合理建议.
某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
由表中数据得线性回归方程
中,
≈-2,预测当气温为-4℃时,用电量为多少.
气温/℃ | 18 | 13 | 10 | -1 |
用电量/度 | 24 | 34 | 38 | 64 |
由表中数据得线性回归方程


下表数据是水的温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的.
(1)画出散点图;
(2)指出x,y是否线性相关,若线性相关,求y关于x的回归方程;
(3)估计水的温度是1000 ℃时,黄酮延长性的情况.
x/℃ | 300 | 400 | 500 | 600 | 700 | 800 |
y/% | 40 | 50 | 55 | 60 | 67 | 70 |
(1)画出散点图;
(2)指出x,y是否线性相关,若线性相关,求y关于x的回归方程;
(3)估计水的温度是1000 ℃时,黄酮延长性的情况.
抽样得到某次考试中高二年级某班8名学生的数学成绩和物理成绩如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学成绩x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理成绩y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
(1) 求y与x的线性回归直线方程(系数保留到小数点后两位).
(2) 如果某学生的数学成绩为83分,预测他本次的物理成绩.
(参考公式:回归直线方程为=
x+
,其中
,a=
-b
.参考数据:
=77.5,
≈84.9,
,
.)
某公司的生产部门调研发现,该公司第二、三季度的月用电量与月份线性相关,且数据统计如下表:

但核对电费报表时发现一组数据统计有误.
(1)请指出哪组数据有误,并说明理由;
(2)在排除有误数据后,求月用电量与月份之间的回归方程,并预测统计有误月份的用电量.(结果精确到0.1)
附注:
,

但核对电费报表时发现一组数据统计有误.
(1)请指出哪组数据有误,并说明理由;
(2)在排除有误数据后,求月用电量与月份之间的回归方程,并预测统计有误月份的用电量.(结果精确到0.1)
附注:


炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量
与冶炼时间
(从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:
(1)据统计表明,
与
之间具有线性相关关系,请用相关系数
加以说明(
,则认为
与
有较强的线性相关关系,否则认为没有较强的线性相关关系,
精确到0.001);
(2)建立
关于
的回归方程(回归系数的结果精确到0.01);
(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.
参考公式:回归方程
中斜率和截距的最小二乘估计分别为
,
,相关系数
参考数据:
,
.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
104 | 180 | 190 | 177 | 147 | 134 | 150 | 191 | 204 | 121 | |
100 | 200 | 210 | 185 | 155 | 135 | 170 | 205 | 235 | 125 | |
10400 | 36000 | 39900 | 32745 | 22785 | 18090 | 25500 | 39155 | 47940 | 15125 |
(1)据统计表明,








(2)建立


(3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.
参考公式:回归方程




参考数据:

