- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商品要了解年广告费
(单位:万元)对年利润
(单位:万元)的影响,对近4年的年广告费
和年利润
数据作了初步整理,得到下面的表格:
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立
关于
的回归直线方程;
(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.




广告费![]() | 2 | 3 | 4 | 5 |
年利润![]() | 26 | 39 | 49 | 54 |
(Ⅰ)用广告费作解释变量,年利润作预报变量,建立


(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.
附:对于一组数据






某产品的广告费用x与销售额y的统计数据如表
根据上表可得回归方程
中的
为
,据此模型预报广告费用为10万元时销售额为

广告费用![]() ![]() | 4 | 2 | 3 | 5 |
销售额![]() ![]() | 49 | 26 | 39 | 54 |
根据上表可得回归方程





A.![]() | B.![]() | C.![]() | D.![]() |
教育部记录了某省2008到2017年十年间每年自主招生录取的人数
为方便计算,2008年编号为1,2009年编号为2,
,2017年编号为10,以此类推
数据如下:
Ⅰ
根据前5年的数据,利用最小二乘法求出y关于x的回归方程
,并计算第8年的估计值和实际值之间的差的绝对值;
Ⅱ
根据
Ⅰ
所得到的回归方程预测2018年该省自主招生录取的人数.
其中
,



年份编号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人数![]() | 3 | 5 | 8 | 11 | 13 | 14 | 17 | 22 | 30 | 31 |







其中






时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)根据上表数据,请在所给的坐标系中画出散点图;
(Ⅱ)根据上表数据,用最小二乘法求出



(Ⅲ)若周六同一时间段的车流量是


参考公式:由最小二乘法所得回归直线的方程是:

其中

为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都要网络报价一次,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加2018年5月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的数据,统计了最近5个月参与竞拍的人数(见下表):

(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数y(万人)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程:
,并预测2018年5月份参与竞拍的人数.
(2)某市场调研机构从拟参加2018年5月份车牌竞拍人员中,随机抽取了200人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:


(i)求
的值及这200位竟拍人员中报价大于5万元的人数;
(ii)若2018年5月份车牌配额数量为3000,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.
参考公式及数据:①
,其中
;
②

(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数y(万人)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程:

(2)某市场调研机构从拟参加2018年5月份车牌竞拍人员中,随机抽取了200人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:


(i)求

(ii)若2018年5月份车牌配额数量为3000,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.
参考公式及数据:①


②

某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如下表:
(Ⅰ)求
关于
的线性回归方程;
(Ⅱ)若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.
(参考公式:
.)
年份![]() | 1 | 2 | 3 | 4 | 5 |
维护费![]() | 1.1 | 1.5 | 1.8 | 2.2 | 2.4 |
(Ⅰ)求


(Ⅱ)若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.
(参考公式:


2017年5月,“一带一路”沿线的20国青年评选出了中国“新四大发明”:高铁、支付宝、共享单车和网购.2017年末,“支付宝大行动”用发红包的方法刺激支付宝的使用.某商家统计前5名顾客扫描红包所得金额分别为5.5元,2.1元,3.3元,5.9元,4.7元,商家从这5名顾客中随机抽取3人赠送台历.
(1)求获得台历的三人中至少有一人的红包超过5元的概率;
(2)统计一周内每天使用支付宝付款的人数
与商家每天的净利润
元,得到7组数据,如表所示,并作出了散点图.


(i)直接根据散点图判断,
与
哪一个适合作为每天的净利润的回归方程类型.(
的值取整数)
(ii)根据(i)的判断,建立
关于
的回归方程,并估计使用支付宝付款的人数增加到35时,商家当天的净利润.
参考数据:
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
(1)求获得台历的三人中至少有一人的红包超过5元的概率;
(2)统计一周内每天使用支付宝付款的人数




(i)直接根据散点图判断,



(ii)根据(i)的判断,建立


参考数据:
![]() | ![]() | ![]() | ![]() |
22.86 | 194.29 | 268.86 | 3484.29 |
附:对于一组数据



一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:

其中
=1,2,3,4,5,6,7.
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求线性回归方程;(结果保留到小数点后两位)
(参考数据:
=3 245,
=25,
=15.43,
=5 075)
(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)

其中

(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求线性回归方程;(结果保留到小数点后两位)
(参考数据:




(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)
下表是某厂生产某种产品的过程中记录的几组数据,其中
表示产量(单位:吨),
表示生产中消耗的煤的数量(单位:吨).
(1)试在给出的坐标系下作出散点图,根据散点图判断,在
与
中,哪一个方程更适合作为变量
关于
的回归方程模型?(给出判断即可,不需要说明理由)
(2)根据(1)的结果以及表中数据,建立变量
关于
的回归方程.并估计生产
吨产品需要准备多少吨煤.参考公式:
.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)试在给出的坐标系下作出散点图,根据散点图判断,在




(2)根据(1)的结果以及表中数据,建立变量





第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和
(从第26届算起,不包括之前已获得的金牌数)随时间
变化的数据:
作出散点图如图:

由图可以看出,金牌数之和
与时间
之间存在线性相关关系,请求出
关于
的线性回归方程,并预测到第32届奥运会时中国代表团获得的金牌数之和为多少?
| 第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和


时间![]() | 26 | 27 | 28 | 29 | 30 |
金牌数之和![]() | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:

由图可以看出,金牌数之和



