刷题首页
题库
高中数学
题干
为分析学生入学时的数学成绩对高一年级数学学习的影响,在高一年级学生中随机抽取10名学生,统计他们入学时的数学成绩和高一期末的数学成绩,如下表:
学生编号
1
2
3
4
5
6
7
8
9
10
入学成绩x(分)
63
67
45
88
81
71
52
99
58
76
高一期末
成绩y(分)
65
78
52
82
92
89
73
98
56
75
(1)求相关系数r;
(2)求y关于x的线性回归方程;
(3)若某学生入学时的数学成绩为80分,试估计他高一期末的数学成绩.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-06 02:59:59
答案(点此获取答案解析)
同类题1
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨标准煤)的几组对照数据,
(1)求
,
,
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)已知该厂技动前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
已知
,
.
,
同类题2
如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.
注:年份代码
分别表示对应年份
.
(1)由折线图看出,可用线性回归模型拟合
与
的关系,请用相关系数
(
线性相关较强)加以说明;
(2)建立
与
的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量.
(参考数据)
,
,
,
,
,
,
.
(参考公式)相关系数
,在回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.
同类题3
某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到下表2:
(1)求
关于
的线性回归方程;
(2)通过(1)中的方程,求出
关于
的回归方程;
(3)用所求回归方程预测到2010年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程
,其中
)
同类题4
假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
(1)求
关于
的线性回归方程;
(2)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:
同类题5
某地
岁男童年龄
(岁)与身高的中位数
如下表:
(岁)
1
2
3
4
5
6
7
8
9
10
76.5
88.5
96.8
104.1
111.3
117.7
124.0
130.0
135.4
140.2
对上表的数据作初步处理,得到下面的散点图及一些统计量的值.
附:回归方程
中的斜率和截距的最小二乘估计
公式分别为:
,
(I)求
关于
的线性回归方程(回归方程系数精确到0.01);
(II)某同学认为,
更适宜作为
关于
的回归方程类型,他求得的回归方程是
.经调查,该地11岁男童身高的中位数为
.与
(I)中的线性回归方程比较,哪个回归方程的拟合效果更好?请说明理由.
相关知识点
计数原理与概率统计
统计
变量间的相关关系
回归直线方程
用回归直线方程对总体进行估计
求回归直线方程