某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据资料:

该兴趣小组确定的研究方案是:先从这6组(每个有序数对叫作一组)数据中随机选取2组作为检验数据,用剩下的4组数据求线性回归方程.
(1)若选取的是1月和6月的两组数据作为检验数据,请根据2至5月份的数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅱ)中所得到的线性回归方程是否是理想的?
参考公式:.
当前题号:1 | 题型:解答题 | 难度:0.99
某高中随机选取5名高三男生,其身高和体重的数据如下表所示:

根据上表可得回归直线方程,根据模型预测身高为174厘米高三男生体重为__________.
当前题号:2 | 题型:填空题 | 难度:0.99
某房产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:

(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).
参考数据:.
参考公式:
当前题号:3 | 题型:解答题 | 难度:0.99
柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数与雾霾天数进行统计分析,得出下表数据.

4
5
7
8

2
3
5
6
 
(1)请画出上表数据的散点图,并说明其相关关系;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:, )
当前题号:4 | 题型:解答题 | 难度:0.99
现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量表示,数据如下表:
特征量
1
2
3
4
5
6
7

98
88
96
91
90
92
96

9.9
8.6
9.5
9.0
9.1
9.2
9.8
 
(1)求关于的线性回归方程(计算结果精确到0.01);
(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1)
附:回归直线方程中斜率和截距的最小二乘法估计公式分别为
  , .
当前题号:5 | 题型:解答题 | 难度:0.99
某公司近年来特别注重创新产品的研发,为了研究年研发经费(单位:万元)对年创新产品销售额(单位:十万元)的影响,对近10年的研发经费与年创新产品销售额,10)的数据作了初步处理,得到如图的散点图及一些统计量的值.

其中
现拟定关于的回归方程为
(1)求的值(结果精确到0.1);
(2)根据拟定的回归方程,预测当研发经费为13万元时,年创新产品销售额是多少?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为
当前题号:6 | 题型:解答题 | 难度:0.99
为了考查两个变量之间的线性关系,甲、乙两位同学各自独立作了次和次试验,并且利用线性回归方法,求得回归直线分别为,已知两人得的试验数据中,变量的数据的平均值都相等,且分别都是,那么下列说法正确的是(  )
A.直线一定有公共点B.必有直线
C.直线相交,但交点不一定是D.必定重合
当前题号:7 | 题型:单选题 | 难度:0.99
为提高玉米产量,某种植基地对单位面积播种数与每棵作物的产量之间的关系进行研究,收集了 11块实验田的数据,得到下表:

技术人员选择模型作为的回归方程类型,令,相关统计量的值如下表:

由表中数据得到回归方程后进行残差分析,残差图如图所示:

(1)根据残差图发现一个可疑数据,请写出可疑数据的编号(给出判断即可,不必说明理由);
(2)剔除可疑数据后,由最小二乘法得到关于的线性回归方程中的,求关于的回归方程;
(3)利用(2)得出的结果,计算当单位面积播种数为何值时,单位面积的总产量的预报值最大?(计算结果精确到0.01)
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.
当前题号:8 | 题型:解答题 | 难度:0.99
根据如图样本数据得到的回归方程为,若样本点的中心为.则当每增加 1 个单位时,就(    )
 
3
4
5
6
7
 
4.0

-0.5
0.5

 
A.增加 1.4 个单位B.减少 1.4 个单位C.增加 7.9 个单位D.减少 7.9 个单位
当前题号:9 | 题型:单选题 | 难度:0.99
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数, 得到如下资料:
日期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差
10
11
13
12
8
6
就诊人数(个)
22
25
29
26
16
12
 
该兴趣小组确定的研究方案是:先从这六组数据中选取 2 组,用剩下的 4 组数据求 线性回归方程,再用被选取的 2 组数据进行检验;
(Ⅰ)求选取的 2 组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出 关于的线性回归方程 ;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
附:对于一组数据 ,…,( ,其回归直线 的斜率和截距的最小二乘估计分别为
.
当前题号:10 | 题型:解答题 | 难度:0.99