- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
(1)求y关于t的线性回归方程
t+
;
(2)用所求回归方程预测该地区2018年(t=6)的人民币储蓄存款.
附:回归方程
t+
中,
.
年 份 | 2013 | 2014 | 2015 | 2016 | 2017 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y/千亿元 | 5 | 6 | 7 | 8 | 10 |
(1)求y关于t的线性回归方程


(2)用所求回归方程预测该地区2018年(t=6)的人民币储蓄存款.
附:回归方程



某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立
关于
的线性回归方程
;
(2)根据(1)中所建立的回归方程预测该地区2018年
年该农产品的产量.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.

(1)根据表中数据,建立



(2)根据(1)中所建立的回归方程预测该地区2018年

附:对于一组数据




寒冷的冬天,某高中一组学生来到一大棚蔬菜基地,研究种子发芽与温度控制技术的关系,他们分别记录五组平均温度及种子的发芽数,得到如下数据:
(Ⅰ)若从五组数据中选取两组数据,求这两组数据平均温度相差不超过
概率;
(Ⅱ)求
关于
的线性回归方程
;
(Ⅲ)若由线性回归方程得到的估计数据与实际数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)屮所得的线性回归方程是否可靠?
(注:
,
)
平均温度![]() ![]() | 11 | 10 | 13 | 9 | 12 |
发芽数![]() | 25 | 23 | 30 | 16 | 26 |
(Ⅰ)若从五组数据中选取两组数据,求这两组数据平均温度相差不超过

(Ⅱ)求



(Ⅲ)若由线性回归方程得到的估计数据与实际数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)屮所得的线性回归方程是否可靠?
(注:


有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为
=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是( )

A.140 | B.143 | C.152 | D.156 |
某公司一种型号的产品近期销售情况如下表
根据上表可得到回归直线方程
,据此估计,该公司7月份这种型号产品的销售额为( )
月份![]() | 2 | 3 | 4 | 5 | 6 |
销售额![]() | 15.1 | 16.3 | 17.0 | 17.2 | 18.4 |
根据上表可得到回归直线方程

A.19.5万元 | B.19.25万元 | C.19.15万元 | D.19.05万元 |
根据如下样本数据:
得到回归方程
,则( )
![]() | 3 | 5 | 7 | 9 |
![]() | 6 | ![]() | 3 | 2 |
得到回归方程

A.变量![]() ![]() | B.变量![]() ![]() |
C.线性回归直线经过上述各样本点 | D.![]() |
已知由样本数据点集合
求得的回归直线方程为
,且
.现发现两个数据点
和
误差较大,去除后重新求得的回归直线
的斜率为1.2,那么,当
时,
的估计值为_______.








菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但蔬菜上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水
(单位:千克)清洗蔬菜
千克后,蔬菜上残留的农药
(单位:微克)的统计表:
(1)在下面的坐标系中,描出散点图,并判断变量
与
是正相关还是负相关;

(2)若用解析式
作为蔬菜农药残量
与用水量
的回归方程,令
,计算平均值
与
,完成以下表格,求出
与
的回归方程(
保留两位有效数字);
(3)对于某种残留在蔬菜上的农药,当它的残留量低于
微克时对人体无害,为了放心食用该蔬菜,请评估需要用多少千克的清水清洗一千克蔬菜?(精确到
,参考数据:
)
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
.



![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)在下面的坐标系中,描出散点图,并判断变量



(2)若用解析式









![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | | | | | |
![]() | | | | | |
(3)对于某种残留在蔬菜上的农药,当它的残留量低于



附:对于一组数据



为了研究黏虫孵化的平均温度
(单位:
)与孵化天数
之间的关系,某课外兴趣小组通过试验得到如下6组数据:
他们分别用两种模型①
,②
分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:

经计算得
,
(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)
(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立
关于
的线性回归方程.(精确到0.1)
,.



组号 | 1 | 2 | 3 | 4 | 5 | 6 |
平均温度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天数 | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他们分别用两种模型①



经计算得

(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)
(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立



假设关于某种设备的使用年限
(年)与所支出的维修费用
(万元)有如下统计资料:
已知
,
.
,
(1)求
,
;
(2)
与
具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?


x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知




(1)求


(2)


(3)估计使用年限为10年时,维修费用约是多少?