- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列有关回归直线方程
的叙述:①反映
与
之间的函数关系;②反映
与
之间的函数关系;③表示
与
之间的不确定关系;④表示最接近
与
之间真实关系的一条直线.其中正确的是()









A.①② | B.②③ |
C.③④ | D.①④ |
已知两个随机变量x,y之间的相关关系如下表所示:
根据上述数据得到的回归方程为
=
x+
,则大致可以判断( )
x | -4 | -2 | 1 | 2 | 4 |
y | -5 | -3 | -1 | -0.5 | 1 |
根据上述数据得到的回归方程为



A. ![]() ![]() | B.![]() ![]() |
C. ![]() ![]() | D. ![]() ![]() |
(2018届河北省石家庄高三教学质量检测(二))随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合
与
的关系,请用相关系数
加以说明;(系数精确到
);
(2)建立
关于
的回归方程
(系数精确到
);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入促销费用多少万元(结果精确到
).
参考数据:
,
,
,
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:
(1)样本
的相关系数
.
(2)对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用![]() | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量![]() | 1 | 1 | 2 | 3 | ![]() | 5 | 4 | ![]() |
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合




(2)建立





参考数据:









参考公式:
(1)样本


(2)对于一组数据






某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10万元时,销售额多大?
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10万元时,销售额多大?
根据如下样本数据得到的回归方程为
.若
=7.9,则x每增加1个单位,y就( )


x | 3 | 4 | 5 | 6 | 7 |
y | 4.0 | 2.5 | 0.5 | 0.5 | 2.0 |
A.增加1.4个单位 | B.减少1.4个单位 |
C.增加1.2个单位 | D.减少1.2个单位 |
某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表如下:表中数据得回归直线方程
中的
=-2,预测当气温为-4℃时,用电量为________.


气温(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
下列说法错误的是( )
A.回归直线过样本点的中心![]() |
B.线性回归方程对应的直线![]() ![]() ![]() ![]() ![]() |
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高 |
D.在回归分析中,![]() ![]() ![]() ![]() |
某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩x与物理成绩y如下表:

数据表明y与x之间有较强的线性关系.
(1)求y关于x的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数
.
,
.

数据表明y与x之间有较强的线性关系.
(1)求y关于x的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数



某单位为了了解用电量y度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:

由表中数据得回归直线方程
中
=-3,预测当气温为2 ℃时,用电量的度数是

由表中数据得回归直线方程


A.70 | B.68 | C.64 | D.62 |
(安徽省合肥市2018冲刺最后1卷)为了研究某班学生的脚长
(单位:厘米)和身高
(单位:厘米)的关系,从该班随机抽取
名学生,根据测量数据的散点图可以看出
与
之间有线性相关关系,设其回归直线方程为
已知
.该班某学生的脚长为
,据此估计其身高为__________.







