在物理实验中,为了研究所挂物体的重量对弹簧长度的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:
物体重量(单位





弹簧长度(单位





 

(1)画出散点图;
(2)利用公式(公式见卷首)求的回归直线方程;
(3)预测所挂物体重量为时的弹簧长度.
当前题号:1 | 题型:解答题 | 难度:0.99
某产品的广告支出(单位:万元)与销售收入(单位:万元)之间有下表所对应的数据:

(1)画出表中数据的散点图;
(2)求出的线性回归方程;
(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:
当前题号:2 | 题型:解答题 | 难度:0.99
为庆祝“三八妇女节”,校组织该校48名女教职工参加跳绳与踢毽子两项健身活动.在规则下,成绩统计如图,代表跳绳的次数,代表踢毽子的次数,并设置奖励标准:为一等奖,每人奖励300元;为三等奖,每人奖励100元;其余皆为二等奖,每人奖励200元;

(1)试估计该校女教职工获得奖金的平均数;
(2)从该校跳绳成绩的女教职工中随机抽取两人,若对拿到单项最高成绩者额外奖励每人100元,记这两人的奖金之和为,求.
(3)鉴于此项活动健康有趣,导向积极,易于操作,引得其他学校竞相效仿,相继举行此项活动(并设立同样的奖励标准).若以样本估计总体,从参加此项活动的女教职工(人数很多)中随机抽取两人,记这两人所获奖金之和为,求的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
两个变量的相关关系有正相关,负相关,不相关,则下列散点图从左到右分别反映的变量间的相关关系是  
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间(分钟)
10
11
12
13
14
15
等候人数(人)
23
25
26
29
28
31
 
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求关于的线性回归方程
(2)判断(1)中的方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.
当前题号:5 | 题型:解答题 | 难度:0.99
已知变量之间具有线性相关关系,其散点图如图所示,则其回归方程可能为(    )
A.B.
C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
一商场对5年来春节期间服装类商品的优惠金额(单位:万元)与销售额(单位:万元)之间的关系进行分析研究并做了记录,得到如下表格.
日期
2014年
2015年
2016年
2017年
2018年

2
4
5
6
8

30
40
60
50
70
 
(1)画出散点图,并判断服装类商品的优惠金额与销售额是正相关还是负相关;

(2)根据表中提供的数据,求出的回归方程
(3)若2019年春节期间商场预定的服装类商品的优惠金额为10万元,估计该商场服装类商品的销售额.
参考公式:
参考数据:
当前题号:7 | 题型:解答题 | 难度:0.99
近期,长沙市公交公司推出“湘行一卡通”扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载“湘行一卡通”,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:
















 
根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
支付方式
现金
乘车卡
扫码
比例



 
假设该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:










 
其中:
参考公式:对于一组数据,…,…,,其回归直线的斜率和截距的最小二乘估计公式分别为:.
当前题号:8 | 题型:解答题 | 难度:0.99
某班的健康调查小组从所在学校共选取15名男同学,其年龄、身高和体重数据如下表所示(本题中身高单位:,体重单位:).
年龄
(身高,体重)
年龄
(身高,体重)
15

18

16

19

17

 
 
 
(1)如果某同学“身高-体重”,则认为该同学超重,从上述15名同学中任选两名同学,其中超重的同学人数为,求的分布列和数学期望;
(2)根据表中数据,设计两种方案预测学生身高.方案①:建立平均体重与年龄的线性回归模型,表中各年龄的体重按三名同学的平均体重计算,数据整理如下表.

1
2
3
4
5
年龄
15
16
17
18
19
平均体重
59
63.3
64
70
69.7
 
方案②:建立平均体重与平均身高的线性回归模型,将所有数据按身高重新分成6组:,并将每组的平均身高依次折算为155,160,165,170,175,180,各组的体重按平均体重计算,数据整理如下表.

1
2
3
4
5
6
平均身高
155
160
165
170
175
180
平均体重
48
57
63
68
74
82
 
(i)用方案①预测20岁男同学的平均体重和用方案②预测身高的男同学的平均体重,你认为哪个更合理?请给出理由;
(ii)请根据方案②建立平均体重与平均身高的线性回归方程(数据精确到0.01).
附:..
当前题号:9 | 题型:解答题 | 难度:0.99
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价(元)
4
6
7
8
10
销量(件)
60
50
45
30
20
 
(1)   请根据上表提供的数据画出散点图,并判断是正相关还是负相关;
(2)   求出关于的回归直线方程,若单价为9元时,预测其销量为多少?
(参考公式:回归直线方程中公式 ,
当前题号:10 | 题型:解答题 | 难度:0.99