- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制100件工艺品测得其重量(单位:
) 数据,将数据分组如下表:

(1)统计方法中,同一组数据常用该组区间的中点值(例如区间
的中点值是2.25)作为代表.据此,估计这100个数据的平均值;
(2)根据样本数据,以频率作为槪率,若该陶瓷厂生产这样的工艺品5000件,试估计重量落在
中的件数;
(3)从第一组和第六组6件工艺品中随机抽取2个工艺品,求一个来自第一组,一个来自第六组的概率.


(1)统计方法中,同一组数据常用该组区间的中点值(例如区间

(2)根据样本数据,以频率作为槪率,若该陶瓷厂生产这样的工艺品5000件,试估计重量落在

(3)从第一组和第六组6件工艺品中随机抽取2个工艺品,求一个来自第一组,一个来自第六组的概率.
某超市为调查会员某年度上半年的消费情况制作了有奖调查问卷发放给所有会员,并从参与调查的会员中随机抽取
名了解情况并给予物质奖励.调查发现抽取的
名会员消费金额(单位:万元)都在区间
内,调查结果按消费金额分成
组,制作成如下的频率分布直方图.

(1)求该
名会员上半年消费金额的平均值与中位数;(以各区间的中点值代表该区间的均值)
(2)现采用分层抽样的方式从前
组中选取
人进行消费爱好调查,然后再从前
组选取的人中随机选
人,求这
人都来自第
组的概率.





(1)求该

(2)现采用分层抽样的方式从前






树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(I)求出
的值;
(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.







(I)求出

(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
从某工厂的一个车间抽取某种产品
件,产品尺寸(单位:
)落在各个小组的频数分布如下表:
(1)根据频数分布表,求该产品尺寸落在
的概率;
(2)求这
件产品尺寸的样本平均数
;(同一组中的数据用该组区间的中点值作代表)
(3)根据频数分布对应的直方图,可以认为这种产品尺寸
服从正态分布
,其中
近似为样本平均值
,
近似为样本方差
,经过计算得
,利用该正态分布,求
.
附:①若随机变量
服从正态分布
,则
,
;②
.


数据 分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据频数分布表,求该产品尺寸落在

(2)求这


(3)根据频数分布对应的直方图,可以认为这种产品尺寸








附:①若随机变量





从某企业生产的产品的生产线上随机抽取 件产品,测量这批产品的一项质量指标值,由测量结果得如图所示的频率分布直方图:

(Ⅰ) 估计这批产品质量指标值的样本平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(Ⅱ) 若该种产品的等级及相应等级产品的利润(每件)参照以下规则(其中
为产品质量指标值):
当
, 该产品定为一等品,企业可获利 200 元;
当
且
,该产品定为二等品,企业可获利 100 元;
当
且
,该产品定为三等品,企业将损失 500 元;
否则该产品定为不合格品,企业将损失 1000 元.
(ⅰ)若测得一箱产品(5 件)的质量指标数据分别为:76、85、93、105、112,求该箱产品的利润;
(ⅱ)设事件
;事件
;事件
. 根据经验,对于该生产线上的产品,事件
发生的概率分别为0.6826、0.9544、0.9974.根据以上信息,若产品预计年产量为10000件,试估计该产品年获利情况.(参考数据:
)

(Ⅰ) 估计这批产品质量指标值的样本平均数


(Ⅱ) 若该种产品的等级及相应等级产品的利润(每件)参照以下规则(其中

当

当


当


否则该产品定为不合格品,企业将损失 1000 元.
(ⅰ)若测得一箱产品(5 件)的质量指标数据分别为:76、85、93、105、112,求该箱产品的利润;
(ⅱ)设事件





某大型商场去年国庆期间累计生成
万张购物单,从中随机抽出
张,对每单消费金额进行统计得到下表:
由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过
元的概率;
(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过
元者,可抽奖一次.抽奖规则为:从装有大小材质完全相同的
个红球和
个黑球的不透明口袋中,随机摸出
个小球,并记录两种颜色小球的数量差的绝对值
,当
时,消费者可分别获得价值
元、
元和
元的购物券.求参与抽奖的消费者获得购物券的价值的数学期望.


消费金额(单位:元) | ![]() | ![]() | ![]() | ![]() | ![]() |
购物单张数 | 25 | 25 | 30 | | |
由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:
(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过

(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过









某医院随机抽取20位急症病人家属了解病人等待急症的时间,记录如下表:
根据以上记录,病人等待急症平均时间的估计值
__________分钟.
等待急症时间(分钟) | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 4 | 8 | 5 | 2 | 1 |
根据以上记录,病人等待急症平均时间的估计值

从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.

(1)求频率分布直方图中
的值并估计这50户用户的平均用电量;
(2)若将用电量在区间
内的用户记为
类用户,标记为低用电家庭,用电量在区间
内的用户记为
类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:

①从
类用户中任意抽取3户,求恰好有2户打分超过85分的概率;
②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有
的把握认为“满意度与用电量高低有关”?
附表及公式:
,
.

(1)求频率分布直方图中

(2)若将用电量在区间





①从

②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有

| 满意 | 不满意 | 合计 |
![]() | | | |
![]() | | | |
合计 | | | |
附表及公式:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |


某学校高一年级共有20个班,为参加全市的钢琴比赛,调查了各班中会弹钢琴的人数,并以组距为5将数据分组成
时,作出如下频率分布直方图.

(Ⅰ)由频率分布直方图估计各班中会弹钢琴的人数的平均值;
(Ⅱ)若会弹钢琴的人数为
的班级作为第一备选班级,会弹钢琴的人数为
的班级作为第二备选班级,现要从这两类备选班级中选出两个班参加市里的钢琴比赛,求这两类备选班级中均有班级被选中的概率.


(Ⅰ)由频率分布直方图估计各班中会弹钢琴的人数的平均值;
(Ⅱ)若会弹钢琴的人数为


某中学为调查该校学生每周参加社会实践活动的情况,随机收集了若干名学生每周参加社会实践活动的时间(单位:小时),将样本数据绘制如图所示的频率分布直方图,且在[0,2)内的学生有1人.

(1)求样本容量
,并根据频率分布直方图估计该校学生每周参加社会实践活动时间的平均值;
(2)将每周参加社会实践活动时间在[4,12]内定义为“经常参加社会实践”,参加活动时间在[0,4)内定义为“不经常参加社会实践”.已知样本中所有学生都参加了青少年科技创新大赛,有13人成绩等级为“优秀”,其余成绩为“一般”,其中成绩优秀的13人种“经常参加社会实践活动”的有12人.请将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.05的前提下认为青少年科技创新大赛成绩“优秀”与经常参加社会实践活动有关;
(3)在(2)的条件下,如果从样本中“不经常参加社会实践”的学生中随机选取两人参加学校的科技创新班,求其中恰好一人成绩优秀的概率.
参考公式和数据:
.

(1)求样本容量

(2)将每周参加社会实践活动时间在[4,12]内定义为“经常参加社会实践”,参加活动时间在[0,4)内定义为“不经常参加社会实践”.已知样本中所有学生都参加了青少年科技创新大赛,有13人成绩等级为“优秀”,其余成绩为“一般”,其中成绩优秀的13人种“经常参加社会实践活动”的有12人.请将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.05的前提下认为青少年科技创新大赛成绩“优秀”与经常参加社会实践活动有关;
(3)在(2)的条件下,如果从样本中“不经常参加社会实践”的学生中随机选取两人参加学校的科技创新班,求其中恰好一人成绩优秀的概率.
参考公式和数据:

![]() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |