- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市在“创文”期间,创“文明行车、出行安全”.交警部门通过路面监控随机抽样40辆小轿车调查经过某区间路段的汽车行驶速度,现将行车速度
分成六段
,得到如图所示的频率分布直方图,根据图解答下列问题.

(1)估计这40辆小型车辆车速的平均数;
(2)假设车速在
以下为安全行驶,估计某小型轿车途径该路段时为安全行驶的概率;
(3)若在这40辆车中随机抽取两辆车速为
内的轿车,求两辆车速都在
内的概率.



(1)估计这40辆小型车辆车速的平均数;
(2)假设车速在

(3)若在这40辆车中随机抽取两辆车速为


一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量
单位:克
,重量分组区间为
,
,
,
,由此得到样本的重量频率分布直方图
如图
.
(1)求
的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量
内的小球个数为
,求
的分布列和数学期望.(以直方图中的频率作为概率)








(1)求

(2)从盒子中随机抽取3个小球,其中重量




某企业准备推出一种花卉植物用于美化城市环境,为评估花卉的生长水平,现对该花卉植株的高度(单位:厘米)进行抽查,所得数据分组为
,据此制作的频率分布直方图如图所示.

(1)求出直方图中的
值;
(2)利用直方图估算花卉植株高度的中位数;
(3)若样本容量为32,现准备从高度在
的植株中继续抽取2颗做进一步调查,求抽取植株来自同一组的概率.


(1)求出直方图中的

(2)利用直方图估算花卉植株高度的中位数;
(3)若样本容量为32,现准备从高度在

中华民族是一个传统文化丰富多彩的民族,各民族有许多优良的传统习俗,如过大年吃饺子,元宵节吃汤圆,端午节吃粽子,中秋节吃月饼等等,让人们感受到浓浓的节目味道. 某小区有1200户家庭,全部居民在小区的8栋楼内,各家庭在过年时各自包有肉馅饺子、蛋馅饺子和素馅饺子三种味道的饺子(假设每个家庭包有且只包有这三种味道中的一种味道的饺子).
(1)现根据饺子的不同味道用分层抽样的方法从该小区随机抽样抽取
户家庭,其中有10户家庭包的是素馅饺子,在抽取家庭中包肉馅饺子和蛋馅饺子的家庭分布在8栋楼内的住户数记录为如图所示的茎叶图,已知肉馅饺子数的中位数为10,蛋馅饺子数的平均数为5,求该小区包肉馅饺子的户数;
(2)现从包肉馅饺子的家庭中随机抽取100个家庭调查包饺子的用肉量(单位:
)得到了如图所示的频率分布直方图,若用肉量在第1小组
内的户数为
(
为茎叶图中的
),试估计该小区过年时各户用于包饺子的平均用肉量(各小组数据以组中值为代表).
(1)现根据饺子的不同味道用分层抽样的方法从该小区随机抽样抽取

(2)现从包肉馅饺子的家庭中随机抽取100个家庭调查包饺子的用肉量(单位:






某工厂有工人1000名,为了提高工人的生产技能,特组织工人参加培训.其中250名工人参加过短期培训(称为
类工人),另外750名工人参加过长期培训(称为
类工人).现从该工厂的工人中共抽查了100名工人作为样本,调查他们的生产能力(生产能力是指工人一天加工的零件数),得到
类工人生产能力的茎叶图(图1),
类工人生产能力的频率分布直方图(图2).

(1)在样本中求
类工人生产能力的中位数,并估计
类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);
(2)若规定生产能力在
内为能力优秀,现以样本中频率作为概率,从1000名工人中按分层抽样共抽取
名工人进行调查,请估计这
名工人中的各类人数,完成下面的
列联表.

若研究得到在犯错误的概率不超过
的前提下,认为生产能力与培训时间长短有关,则
的最小值为多少?
参考数据:

参考公式:
,其中
.





(1)在样本中求


(2)若规定生产能力在





若研究得到在犯错误的概率不超过


参考数据:

参考公式:


一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为
.
(1)确定
,
,
,
的值,并补全频率分布直方图;

(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
网购金额 (单位:千元) | 频数 | 频率 |
![]() | 3 | ![]() |
![]() | ![]() | ![]() |
![]() | 9 | ![]() |
![]() | 15 | ![]() |
![]() | 18 | ![]() |
![]() | ![]() | ![]() |
合计 | 60 | ![]() |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为

(1)确定





(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.

(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合计 | M | 1 |

(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.
我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

一名大学生尝试开家“网店”销售一种学习用品,经测算每售出1盒该产品可获利30元,未售出的商品每盒亏损10元.根据统计资料,得到该商品的月需求量的频率分布直方图如图所示,该同学为此购进180盒该产品,以x(单位:盒,100≤x≤200)表示一个月内的市场需求量,y(单位:元)表示一个月内经销该产品的利润.

(1)根据直方图估计这个月内市场需求量x的平均数;
(2)将y表示为x的函数;
(3)根据直方图估计这个月利润不少于3 800元的概率(用频率近似概率).

(1)根据直方图估计这个月内市场需求量x的平均数;
(2)将y表示为x的函数;
(3)根据直方图估计这个月利润不少于3 800元的概率(用频率近似概率).
从某食品厂生产的面包中抽取
个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:

(1)在相应位置上作出这些数据的频率分布直方图;
(2)估计这种面包质量指标值的平均数
(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于
的面包至少要占全部面包
的规定?”

质量指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |

(1)在相应位置上作出这些数据的频率分布直方图;
(2)估计这种面包质量指标值的平均数

(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于

