- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将
地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为
,中位数为n,则
_________.




随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如图.

(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;
(2)根据以上抽样调查数据,回答以下问题:
(ⅰ)为了解如何降低各商家的送餐时间,我们先从这100家商家里选出平均送达时间不超过20分钟的商家,然后再从中随机挑选两家进行跟踪研究,求恰好所抽中的商家均为使用B款软件的概率.
(ⅱ)如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?并说明理由.

(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;
(2)根据以上抽样调查数据,回答以下问题:
(ⅰ)为了解如何降低各商家的送餐时间,我们先从这100家商家里选出平均送达时间不超过20分钟的商家,然后再从中随机挑选两家进行跟踪研究,求恰好所抽中的商家均为使用B款软件的概率.
(ⅱ)如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?并说明理由.
2016年5月20日以来,广东自西北到东南出现了一次明显降雨.为了对某地的降雨情况进行统计,气象部门对当地20日~28日9天内记录了其中100小时的降雨情况,得到每小时降雨情况的频率分布直方图如下:

若根据往年防汛经验,每小时降雨量在
时,要保持二级警戒,每小时降雨量在
时,要保持一级警戒.
(1)若以每组的中点代表该组数据值,求这100小时内每小时的平均降雨量;
(2)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.再从这10小时中随机抽取3小时,求抽取的这3小时中属于一级警戒时间的分布列与数学期望.

若根据往年防汛经验,每小时降雨量在


(1)若以每组的中点代表该组数据值,求这100小时内每小时的平均降雨量;
(2)若从记录的这100小时中按照警戒级别采用分层抽样的方法抽取10小时进行深度分析.再从这10小时中随机抽取3小时,求抽取的这3小时中属于一级警戒时间的分布列与数学期望.
某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为
类同学),另外250名同学不经常参加体育锻炼(称为
类同学),现用分层抽样方法(按
类、
类分二层)从该年级的学生中共抽查100名同学.

(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);
(2)如果以身高达到
作为达标的标准,对抽取的100名学生,得到列联表:
体育锻炼与身高达标
列联表
①完成上表;
②请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:
.
参考数据:





(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);
(2)如果以身高达到

体育锻炼与身高达标

| 身高达标 | 身高不达标 | 合计 |
积极参加体育锻炼 | 60 | | |
不积极参加体育锻炼 | | 10 | |
合计 | | | 100 |
①完成上表;
②请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:

参考数据:
![]() | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2019年8月8日是我国第十一个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.

(1)试求这40人年龄的平均数、中位数的估计值;
(2)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;

(1)试求这40人年龄的平均数、中位数的估计值;
(2)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;
某市工会组织了一次工人综合技能比赛,一共有
名工人参加,他们的成绩都分布在
内,数据经过汇总整理得到如下的频率分布直方图,规定成绩在
分及
分以上的为优秀.

(1)求图中
的值;
(2)估计这次比赛成绩的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(3)某工厂车间有
名工人参加这次比赛,他们的成绩分布和整体的成绩分布情况完全一致,若从该车间参赛的且成绩为优秀的工人中任选两人,求这两人成绩均低于
分的概率.





(1)求图中

(2)估计这次比赛成绩的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(3)某工厂车间有


某年级100名学生期中考试数学成绩(单位:分)的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中a的值,并根据频率分布直方图估计这100名学生数学成绩的平均分;
(2)从[70,80)和[80,90)分数段内采用分层抽样的方法抽取5名学生,求在这两个分数段各抽取的人数;
(3)现从第(2)问中抽取的5名同学中任选2名参加某项公益活动,求选出的两名同学均来自[70,80)分数段内的概率.

(1)求图中a的值,并根据频率分布直方图估计这100名学生数学成绩的平均分;
(2)从[70,80)和[80,90)分数段内采用分层抽样的方法抽取5名学生,求在这两个分数段各抽取的人数;
(3)现从第(2)问中抽取的5名同学中任选2名参加某项公益活动,求选出的两名同学均来自[70,80)分数段内的概率.
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

(1)在答题卡上画出这些数据的频率分布直方图(要求用阴影部分显示);
(2)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
(3)估计这种产品质量指标值的平均值及中位数(其中求平均值时同一组中的数据用该组区间的中点值作代表,求中位数精确到0.1).
质量指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | 26 | 38 | 22 | 8 |

(1)在答题卡上画出这些数据的频率分布直方图(要求用阴影部分显示);
(2)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
(3)估计这种产品质量指标值的平均值及中位数(其中求平均值时同一组中的数据用该组区间的中点值作代表,求中位数精确到0.1).
某家庭记录了未使用节水龙头50天的日用水量数据(单位:
)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

(2)估计该家庭使用节水龙头后,日用水量小于0.3
的概率;
(3)估计该家庭用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)

未使用节水龙头50天的日用水量频数分布表
日用水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) | [0.6,0.7) |
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | [0,0.1) | [0.1,0.2) | [0.2,0.3) | [0.3,0.4) | [0.4,0.5) | [0.5,0.6) |
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;

(2)估计该家庭使用节水龙头后,日用水量小于0.3

(3)估计该家庭用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)