- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两个篮球队在4次不同比赛中的得分情况如下:
乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用
表示.
(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;
(Ⅱ)当
时,分别从甲、乙两队的4次比赛中各随机选取1次,记这2个比赛得分之差的绝对值为
,求随机变量
的分布列;
(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出
的取值集合.(结论不要求证明)
甲队 | 88 | 91 | 92 | 96 |
乙队 | 89 | 93 | 9▓ | 92 |
乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用

(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;
(Ⅱ)当



(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出

按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:
(1)根据上述样本数据,估计一辆普通7座以下私家车(车龄已满3年)在下一年续保时,保费高于基准保费的概率;
(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.
①若该销售商部门店内现有6辆该品牌二手车(车龄已满3年),其中两辆事故车,四辆非事故车.某顾客在店内随机挑选两辆车,求这两辆车中恰好有一辆事故车的概率;
②以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率.该销售商一次购进120辆(车龄已满三年)该品牌二手车,若购进一辆事故车亏损4000元,一辆非事故车盈利8000元.试估计这批二手车一辆车获得利润的平均值.

交强险浮动因素和浮动费率比率表 | ||
投保类型 | 浮动因素 | 浮动比率 |
![]() | 上一个年度未发生有责任道路交通事故 | 下浮10% |
![]() | 上两个年度未发生有责任道路交通事故 | 下浮20% |
![]() | 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
![]() | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
![]() | 上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮10% |
![]() | 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:
类型 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
数量 | 20 | 10 | 10 | 20 | 15 | 5 |
(1)根据上述样本数据,估计一辆普通7座以下私家车(车龄已满3年)在下一年续保时,保费高于基准保费的概率;
(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.
①若该销售商部门店内现有6辆该品牌二手车(车龄已满3年),其中两辆事故车,四辆非事故车.某顾客在店内随机挑选两辆车,求这两辆车中恰好有一辆事故车的概率;
②以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率.该销售商一次购进120辆(车龄已满三年)该品牌二手车,若购进一辆事故车亏损4000元,一辆非事故车盈利8000元.试估计这批二手车一辆车获得利润的平均值.
某市国庆节
天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这
天的认购量与成交量作出如下判断:①日成交量的中位数是
;②日成交量超过日平均成交量的有
天;③认购量与日期正相关;④
月
日认购量的增量大于
月
日成交量的增量.上述判断中错误的个数为( )










A.![]() | B.![]() | C.![]() | D.![]() |
某车间将
名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的茎叶图如图,已知两组技工在单位时间内加工的合格零件的平均数都为
.

(1)求
,
的值;
(2)求甲、乙两组技工在单位时间内加工的合格零件的方差
和
,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于
,则称该车间“质量合格”,求该车间“质量合格”的概率.
附:方差
,其中
为数据
的平均数



(1)求


(2)求甲、乙两组技工在单位时间内加工的合格零件的方差


(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于

附:方差



某单位需要从甲、乙两人中选拔一人参加新岗位培训,特别组织了5个专项的考试,成绩统计如下:
(1)根据有关统计知识,回答问题:若从甲、乙2人中选出1人参加新岗位培训,你认为选谁合适,请说明理由;
(2)根据有关概率知识,解答以下问题:
从甲、乙两人的成绩中各随机抽取一个,设抽到甲的成绩为
,抽到乙的成绩为
,用
表示满足条件
的事件,求事件
的概率.
| 第一项 | 第二项 | 第三项 | 第四项 | 第五项 |
甲的成绩 | 81 | 82 | 79 | 96 | 87 |
乙的成绩 | 94 | 76 | 80 | 90 | 85 |
(1)根据有关统计知识,回答问题:若从甲、乙2人中选出1人参加新岗位培训,你认为选谁合适,请说明理由;
(2)根据有关概率知识,解答以下问题:
从甲、乙两人的成绩中各随机抽取一个,设抽到甲的成绩为





已知甲、乙两名篮球运动员进行罚球训练,每人练习10组,每组罚球40个, 每组命中个数的茎叶图如图所示,则下列结论错误的是( )


A.甲命中个数的极差是29 | B.乙命中个数的众数是21 |
C.甲的命中率比乙高 | D.甲命中个数的中位数是25 |
下表是某厂
月份用水量(单位:百吨)的一组数据:
由散点图可知,用水量
与月份
之间有较好的线性相关关系,其线性回归直线方程是
,则
( )

月份![]() | ![]() | ![]() | ![]() | ![]() |
用水量![]() | ![]() | ![]() | ![]() | ![]() |
由散点图可知,用水量




A.![]() | B.![]() | C.![]() | D.![]() |