- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校为了了解
两班学生寒假期间观看《中国诗词大会》的时长,分别从这两个班中随机抽取5名学生进行调查,将他们观看的时长(单位:小时)作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;
(2)从
班的样本数据中随机抽取一个不超过19的数据记为
,从
班的样本数据中随机抽取一个不超过21的数据记为
,求
的概率.


(1)分别求出图中所给两组样本数据的平均值,并据此估计哪个班的学生平均观看的时间较长;
(2)从





美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求百度外卖公司的“骑手”一日工资
(单位:元)与送餐单数
的函数关系;
(Ⅱ)若将频率视为概率,回答下列问题:
①记百度外卖的“骑手”日工资为
(单位:元),求
的分布列和数学期望;
②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

(Ⅰ)求百度外卖公司的“骑手”一日工资


(Ⅱ)若将频率视为概率,回答下列问题:
①记百度外卖的“骑手”日工资为


②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
2016年,某省环保部门制定了《省工业企业环境保护标准化建设基本要求及考核评分标准》,为了解本省各家企业对环保的重视情况,从中抽取了40家企业进行考核评分,考核评分均在
内,按照
,
,
,
,
的分组作出频率分布直方图如图(满分为100分).

(Ⅰ)已知该省对本省每家企业每年的环保奖励
(单位:万元)与考核评分
的关系式为
(负值为企业上缴的罚金).试估计该省在2016年对这40家企业投放环保奖励的平均值;
(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机2家企业座谈环保经验,求抽取的2家企业全部为考核评分在
内的企业的概率.







(Ⅰ)已知该省对本省每家企业每年的环保奖励



(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机2家企业座谈环保经验,求抽取的2家企业全部为考核评分在

2016年,某省环保部门制定了《省工业企业环境保护标准化建设基本要求及考核评分标准》,为了解本省各家企业对环保的重视情况,从中抽取了40家企业进行考核评分,考核评分均在
内,按照
,
,
,
,
的分组作出频率分布直方图如图(满分为100分).

(Ⅰ)已知该省对本省每家企业每年的环保奖励
(单位:万元)与考核评分
的关系式为
(负值为企业上缴的罚金).试估计该省在2016年对这40家企业投放环保奖励的平均值;
(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机3家企业座谈环保经验,设
为所抽取的3家企业中考核评分在
内的企业数,求随机变量
的分布列和数学期望.







(Ⅰ)已知该省对本省每家企业每年的环保奖励



(Ⅱ)在这40家企业中,从考核评分在80分以上(含80分)的企业中随机3家企业座谈环保经验,设



某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.

为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)当
时,记甲型号电视机的“星级卖场”数量为
,乙型号电视机的“星级卖场”数量为
,比较
的大小关系;
(2)在这10个卖场中,随机选取2个卖场,记
为其中甲型号电视机的“星级卖场”的个数,求
的分布列和数学期望;
(3)若
,记乙型号电视机销售量的方差为
,根据茎叶图推断
为何值时,
达到最小值.(只需写出结论)

为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)当




(2)在这10个卖场中,随机选取2个卖场,记


(3)若




某班级有50名同学,一次数学测试平均成绩是92,如果学号为1号到30号的同学平均成绩为90,则学号为31号到50号同学的平均成绩为__________.
若样本
的平均数是
,方差是
,则对样本
,下列结论正确的是 ( )




A.平均数为14,方差为5 | B.平均数为13,方差为25 |
C.平均数为13,方差为5 | D.平均数为14,方差为2 |
在学生身高的调查中,小明和小华分别独立进行了简单随机抽样调查.小明调查的样本平均数为166.4,样本量为100;小华调查的样本平均数为164.7,样本量为200.你更愿意把哪个值作为总体平均数的估计?是不是你选的值一定比另一个更接近总体平均数?说说你的理由.
甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损,用
代替,
则乙的平均成绩低于甲的平均成绩的概率是( )

| 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 91 | 86 | 88 | 92 | 93 |
乙 | 87 | 85 | 86 | 99 | ![]() |
则乙的平均成绩低于甲的平均成绩的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |