- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s,后来发现记录有误,某甲得70分误记为40分,某乙得50分误记为80分,更正后重新计算得标准差为s1,则s与s1之间的大小关系是 ( )
A.s=s1 | B.s<s1 |
C.s>s1 | D.不能确定 |
在了解全校学生每年平均阅读了多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5,方差为9;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6,方差为16.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值与样本方差.
某学校为了了解学生课外阅读情况,随机调查了50名学生,得到他们在每一天各自课外阅读所用时间的数据(其中A,B,C,D,E分别表示课外阅读时间为
,
,
,
,
),结果用条形统计图表示如图,根据条形统计图估计该校全体学生这一天平均每人的课外阅读时间为( )







A.![]() | B.![]() | C.![]() | D.![]() |
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,特制了一份有10道题的问卷到各学校进行问卷调查.某中学A,B两个班各被随机抽取了5名学生接受问卷调查,A班5名学生得分分别为5,8,9,9,9;B班5名学生得分分别为6,7,8,9,10(单位:分).请你估计A,B两个班中哪个班的预防知识的问卷得分要稳定一些.
在某项体育比赛中,七位裁判为一选手打出的分数如下:
9 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
9 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.92,2 | B.92,2.8 | C.93,2 | D.93,2.8 |
甲、乙两名同学在5次体能测试中的成绩的茎叶图如图所示,设
,
分别表示甲、乙两名同学测试成绩的平均数,
,
分别表示甲、乙两名同学测试成绩的标准差,则有






A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
(本小题满分12分)某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有
名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测评,该班的
两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中
组一同学的分数已被污损,但知道
组学生的平均分比
组学生的平均分高
分.

(Ⅰ)若在
组学生中随机挑选
人,求其得分超过
分的概率;
(Ⅱ)现从
组这
名学生中随机抽取
名同学,设其分数分别为
,求
的概率.







(Ⅰ)若在



(Ⅱ)现从





某中学为了解学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:

已知该项目评分标准为:

(Ⅰ)求上述20名女生得分的中位数和众数;
(Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率;

已知该项目评分标准为:

(Ⅰ)求上述20名女生得分的中位数和众数;
(Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率;
某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)