- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
传承传统文化再掀热潮,在刚刚过去的新春假期中,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,下面的茎叶图是两位选手在个人追逐赛中的比赛得分,则下列说法正确的是( )


A.甲的平均数大于乙的平均数 | B.甲的中位数大于乙的中位数 |
C.甲的方差大于乙的方差 | D.甲的平均数等于乙的中位数 |
“附中好声音”歌唱比赛上,七位评委为甲、乙两名选手打出的分数的茎叶图如图所示,其中
为数字0~9中的一个,去掉一个最高分和一个最低分后,甲、乙两名选手的平均分分别为
,
,则( )





A.![]() | B.![]() | C.![]() | D.![]() |
某公司生产
、
两种产品,且产品的质量用质量指标来衡量,质量指标越大表明产品质量越好.现按质量指标划分:质量指标大于或等于82为一等品,质量指标小于82为二等品.现随机抽取这两种产品各100件进行检测,检测结果统计如表:
(Ⅰ)请估计
产品的一等奖;
(Ⅱ)已知每件
产品的利润
(单位:元)与质量指标值
的关系式为:
已知每件
产品的利润
(单位:元)与质量指标值
的关系式为:
(i)分别估计生产一件
产品,一件
产品的利润大于0的概率;
(ii)请问生产
产品,
产品各100件,哪一种产品的平均利润比较高.


测试指标 | ![]() | ![]() | ![]() | ![]() | ![]() |
产品![]() | 8 | 12 | 40 | 32 | 8 |
产品![]() | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)请估计

(Ⅱ)已知每件




已知每件




(i)分别估计生产一件


(ii)请问生产


从某校高三学生中随机抽取了
名学生,统计了期末数学考试成绩如下表:
(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这
名学生的平均成绩;
(2)用分层抽样的方法在分数在
内的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至少有
人的分数在
内的概率.

(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这

(2)用分层抽样的方法在分数在






为了解某校学生数学竞赛的成绩分布,从该校数学竞赛的学生成绩中抽取一个样本,并分成5组,绘成频率分布直方图如图所示,从左到右各小组的小长方形的高之比为1:2:2:20:5,最右边一组的频率数是20,请结合直方图的信息,解答下列问题:

(Ⅰ)求样本容量是多少;
(Ⅱ)求样本数据的平均数
和方差
(同一组中的数据用该组区间的中点值作代表).

(Ⅰ)求样本容量是多少;
(Ⅱ)求样本数据的平均数


某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组
,第二组
,第五组
,下图是按上述分组方法得到的频率分布直方图.

(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.




(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;
(2)请估计学校1800名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.
《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布
.现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组
,第二组
,…,第六组
,如图是按上述分组方法得到的频率分布直方图.

(1)试评估该社区被测试的50名市民的成绩在全市市民中成绩的平均状况及这50名市民成绩在172个以上(含172个)的人数;
(2)在这50名市民中成绩在172个以上(含172个)的人中任意抽取2人,该2人中成绩排名(从高到低)在全市前130名的人数记为
,求
的数学期望.
参考数据:若
~
,则
,
,
.





(1)试评估该社区被测试的50名市民的成绩在全市市民中成绩的平均状况及这50名市民成绩在172个以上(含172个)的人数;
(2)在这50名市民中成绩在172个以上(含172个)的人中任意抽取2人,该2人中成绩排名(从高到低)在全市前130名的人数记为


参考数据:若





某校高三学生有两部分组成,应届生与复读生共2000学生,期末考试数学成绩换算为100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:

(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的
,
的学生中,应届生与复读生的比例关系也是9﹕1,从抽取的
,
两段的复读生中,选两人进行座谈,设抽取的
的人数为随机变量
,求
的分布列与期望值。

(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的






