- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点







A.因为![]() ![]() |
B.因为![]() ![]() |
C.因为![]() ![]() |
D.因为![]() ![]() |
从某企业生产的某种产品中随机抽取
件,测量这些产品的一项质量指标值,其频率分布表如下:
则可估计这种产品质量指标值的方差为( )

质量指标值分组 | ![]() | ![]() | ![]() |
频率 | ![]() | ![]() | ![]() |
则可估计这种产品质量指标值的方差为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某研究小组到社区了解参加健美操运动人员的情况,用分层抽样的方法抽取了40人进行调查,按照年龄分成五个小组:
,并绘制成如图所示的频率分布直方图.
(1)求该社区参加健美操运动人员的平均年龄;
(2)如果研究小组从该样本中年龄在
和
的6人中随机地抽取出2人进行深入采访,求被采访的2人,年龄恰好都在
内的概率.

(1)求该社区参加健美操运动人员的平均年龄;
(2)如果研究小组从该样本中年龄在




从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.

(Ⅰ)求
的值;
(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取
人,用
表示身高在
以上的男生人数,求随机变量
的分布列和数学期望
.

(Ⅰ)求

(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取





下面茎叶图表示的是甲、乙两只篮球队三场不同比赛的得分情况,其中有一个数字不清楚,在图中用
来表示.若甲队的平均分不低于乙队平均分,则
的可能取值的集合为( )




A.{2,3} | B.{0,1,2} | C.{1,2} | D.{2} |
某次数学测试中,小明完成前5道题所花的时间(单位:分钟)分别为4,5,6,x,y.已知这组数据的平均数为5,方差为
,则|x﹣y|的值为( )

A.1 | B.2 | C.3 | D.4 |
下面茎叶图表示的是甲、乙两只篮球队三场不同比赛的得分情况,其中有一个数字不清楚,在图中用
来表示.若甲队的平均分不低于乙队平均分,则
的可能取值的集合为( )




A.{2,3} | B.{1,2} | C.{0,1,2} | D.{2} |
甲、乙两位同学参加数学文化知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:


(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据求出甲、乙两位同学的平均值和方差,据此你认为选派哪位同学参加比赛较为合适?
(Ⅲ)若对加同学的正式比赛成绩进行预测,求比赛成绩高于80分的概率.


(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据求出甲、乙两位同学的平均值和方差,据此你认为选派哪位同学参加比赛较为合适?
(Ⅲ)若对加同学的正式比赛成绩进行预测,求比赛成绩高于80分的概率.
据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量
的频率分布直方图,如图所示,将频率视为概率,回答以下问题.

(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每
趟最多只能装载40 件货物,满载发车,否则不发车。若发车,则每辆车每趟可获利1000 元;若未发车,
则每辆车每天平均亏损200 元。为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货
车?


(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每
趟最多只能装载40 件货物,满载发车,否则不发车。若发车,则每辆车每趟可获利1000 元;若未发车,
则每辆车每天平均亏损200 元。为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货
车?