- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地区工会利用“健步行
” 开展健步走积分奖励活动.会员每天走5 千步可获积分30分(不足5千步不积分), 每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了 1000名会员,统计了当天他们的步数,并将样本数据分为
,
九组,整理得到如图频率分布直方图:

(1)求当天这1000名会员中步数少于11千步的人数;
(2)从当天步数在
的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;
(3)写出该组数据的中位数(只写结果).




(1)求当天这1000名会员中步数少于11千步的人数;
(2)从当天步数在

(3)写出该组数据的中位数(只写结果).
在“魅力红谷滩”才艺展示评比中,参赛选手成绩的茎叶图和频率分布直方图都受到不同程度的损坏,可见部分如图所示.
(1)根据图中信息,将图乙中的频率分布直方图补充完整;
(2)根据频率分布直方图估计选手成绩的平均值(同一组数据用该区间的中点值作代表);
(3)从成绩在[80,100]的选手中任选2人进行PK,求至少有1 人成绩在[90,100]的概率.

(1)根据图中信息,将图乙中的频率分布直方图补充完整;
(2)根据频率分布直方图估计选手成绩的平均值(同一组数据用该区间的中点值作代表);
(3)从成绩在[80,100]的选手中任选2人进行PK,求至少有1 人成绩在[90,100]的概率.


某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取
件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在
内,则为合格品,否则为不合格品.表 1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.
表1 甲流水线样本的频数分布表

(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了
万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?
(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;
(3)根据已知条件完成下面
列联表,并判断在犯错误概率不超过
的前提下能否认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?
附:
(其中
为样本容量)


表1 甲流水线样本的频数分布表
质量指标值 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |

(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了

(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;
(3)根据已知条件完成下面


| 甲生产线 | 乙生产线 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级
名学生中随机抽取
名学生进行测试,并将其成绩分为
、
、
、
、
五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为
的人数;
(2)若等级
、
、
、
、
分别对应
分、
分、
分、
分、
分,学校要求当学生获得的等级成绩的平均分大于
分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?
(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为
的
名学生(其中男生
人,女生
人)进行特殊的一对一帮扶培训,从按分层抽样抽取的
人中任意抽取
名,求恰好抽到
名男生的概率.








(1)试估算该校高三年级学生获得成绩为

(2)若等级











(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为







某机构为了了解2017年当地居民网购消费情况,随机抽取了100人,对其2017年全年网购
消费金额(单位:千元)进行了统计,所统计的金额均在区间
内,并按
分成6组,制成如图所示的频率分布直方图.

(1)求图中
的值;
(2)若将全年网购消费金额在20千元及以上者称为网
购迷.结合图表数据,补全
列联表,并判断是否有
99%的把握认为样本数据中的网购迷与性别有关系?说明理由.
(3)己知所有网购迷中使用甲软件支付的用户占了
(非网购迷不使用甲软件),现要从甲软件用户中随机抽取2人进行调查,问恰好抽到1男1女的概率为多少?
下面的临界值表仅供参考:
附:
消费金额(单位:千元)进行了统计,所统计的金额均在区间



(1)求图中

(2)若将全年网购消费金额在20千元及以上者称为网
购迷.结合图表数据,补全

99%的把握认为样本数据中的网购迷与性别有关系?说明理由.
| 男 | 女 | 合计 |
网购迷 | | 20 | |
非网购迷 | 45 | | |
合计 | | | |
(3)己知所有网购迷中使用甲软件支付的用户占了

下面的临界值表仅供参考:
![]() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
附:

南航集团与波音公司2018年2月在广州签署协议,双方合作的客改货项目落户广州空港经济区.根据协议,双方将在维修技术转让、支持项目、管理培训等方面开展战略合作.现组织者对招募的100名服务志愿者培训后,组织一次知识竞赛,将所得成绩制成如下频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.

(1)试求受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.

(1)试求受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.
某厂两个车间某天各20名员工生产的产品数量如下图

(2)题
(1)现在已经根据两组数据完成了乙车间的产量的茎叶图,请自己写出甲车间的茎叶图部分,并通过完整的茎叶图说明甲乙两个车间哪个车间的平均产量高?
(2)对乙车间的产量,以组数为5进行分组,选组距为9构造下面的频率分布图表,并根据频率分布表求出乙车间产量的均值.

甲车间 | 乙车间 |
50,52,56,62,65 | 56,66,67,68,72 |
66,67,68,69,73 | 72,74,75,75,76 |
74,75,76,78,81 | 76,77,77,78,79 |
82,83,87,90,97 | 80,81,84,88,98 |
(2)题
(1)现在已经根据两组数据完成了乙车间的产量的茎叶图,请自己写出甲车间的茎叶图部分,并通过完整的茎叶图说明甲乙两个车间哪个车间的平均产量高?
(2)对乙车间的产量,以组数为5进行分组,选组距为9构造下面的频率分布图表,并根据频率分布表求出乙车间产量的均值.
区间 | 频数 | 频率 |
![]() | | |
![]() | | |
![]() | | |
![]() | | |
![]() | | |
某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级
名学生中随机抽取
名学生进行测试,并将其成绩分为
、
、
、
、
五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为
的人数;
(2)若等级
、
、
、
、
分别对应
分、
分、
分、
分、
分,学校要求平均分达
分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?
(3)为了解心理健康状态稳定学生的特点,现从
、
两种级别中,用分层抽样的方法抽取
个学生样本,再从中任意选取
个学生样本分析,求这
个样本为
级的个数
的分布列与数学期望.








(1)试估算该校高三年级学生获得成绩为

(2)若等级











(3)为了解心理健康状态稳定学生的特点,现从







某房产销售公司从登记购房的客户中随机选取了50名客户进行调查,按他们购一套房的价格(万元)分成6组:
、
、
、
、
、
得到频率分布直方图如图所示.

用频率估计概率.房产销售公司卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
(1)求
的值;
(2)求房产销售公司卖出一套房的平均佣金;
(3)该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:
若该销售公司平均每天销售4套房,请估计公司月利润(利润=总佣金-销售成本).







用频率估计概率.房产销售公司卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
每一套房 价格区间 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
买一套房销售公司佣金收入 | 1 | 2 | 3 | 4 | 5 | 6 |
(1)求

(2)求房产销售公司卖出一套房的平均佣金;
(3)该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:
月总佣金 | 销售成本占佣金比例 |
不超过100万元的部分 | 5% |
超过100万元至200万元的部分 | 10% |
超过200万元至300万元的部分 | 15% |
超过300万元的部分 | 20% |
若该销售公司平均每天销售4套房,请估计公司月利润(利润=总佣金-销售成本).
某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为
等;分数在
内,记为
等;分数在
内,记为
等;60分以下,记为
等.同时认定
为合格,
为不合格.已知甲,乙两所学校学生的原始成绩均分布在
内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照
的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为
的所有数据茎叶图如图2所示.

(Ⅰ)求图1中
的值,并根据样本数据比较甲乙两校的合格率;
(Ⅱ)在选取的样本中,从甲,乙两校
等级的学生中随机抽取3名学生进行调研,用
表示所抽取的3名学生中甲校的学生人数,求随机变量
的分布列和数学期望.












(Ⅰ)求图1中

(Ⅱ)在选取的样本中,从甲,乙两校


