- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校有
名学生参加学校组织的“数学竞赛集训队”选拔考试,现从中等可能抽出
名学生的成绩作为样本,制成如图频率分布表:
(1)求
的值,并根据题中信息估计总体平均数是多少?
(2)若成绩不低于
分的同学能参加“数学竞赛集训队”,试估计该校大约多少名学生能参加“数学竞赛集训队”?


分组 | 频数 | 频率 |
![]() | | 0.025 |
![]() | | 0.050 |
![]() | | 0.200 |
![]() | 12 | 0.300 |
![]() | | 0.275 |
![]() | 4 | |
![]() | | 0.050 |
合计 | ![]() | 1 |
(1)求

(2)若成绩不低于

生物兴趣小组的同学到课外调查某种植物的生长情况,共测量了30株该植物的高度(单位:厘米),并画出样本频率分布直方图如图,则高度不低于25厘米的有__________株.

哈师大附中高三学年统计甲、乙两个班级一模数学分数,每个班级20名同学,现有甲、乙两班本次考试数学分数如下列茎叶图所示:

(I)根据基叶图求甲、乙两班同学数学分数的中位数,并将乙班同学的分数的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较在一模考试中,甲、乙两班同学数学分数的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可)
(Ⅲ)若规定分数在
的成绩为良好,分数在
的成绩为优秀,现从甲、乙两班成绩为优秀的同学中,按照各班成绩为优秀的同学人数占两班总的优秀人数的比例分层抽样,共选出12位同学参加数学提优培训,求这12位同学中恰含甲、乙两班所有140分以上的同学的概率.

(I)根据基叶图求甲、乙两班同学数学分数的中位数,并将乙班同学的分数的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较在一模考试中,甲、乙两班同学数学分数的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可)
(Ⅲ)若规定分数在


为了弘扬民族文化,某中学举行了“我爱国学,传诵经典”考试,并从中随机抽取了60名学生的成绩作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.

(1)若该所中学共有2000名学生,试利用样本估计全校这次考试中优秀生人数;
(2)(i)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间的中点值作代表);
(ii)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人赠送一套国学经典学籍,试求恰好抽中2名优秀生的概率.

(1)若该所中学共有2000名学生,试利用样本估计全校这次考试中优秀生人数;
(2)(i)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间的中点值作代表);
(ii)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人赠送一套国学经典学籍,试求恰好抽中2名优秀生的概率.
某校高三年级实验班与普通班共1000名学生,其中实验班学生200人,普通班学生800人,现将高三一模考试数学成绩制成如图所示频数分布直方图,按成绩依次分为5组,其中第一组([0, 30)),第二组([30, 60)),第三组([60, 90)),的频数成等比数列,第一组与第五组([120, 150))的频数相等,第二组与第四组([90, 120))的频数相等.

(1)求第三组的频率;
(2)已知实验班学生成绩
在第五组,
在第四组,剩下的都在第三组,试估计实验班学生数学成绩的平均分;
(3)在(2)的条件下,按分层抽样的方法从第5组中抽取5人进行经验交流,再从这5人中随机抽取3人在全校师生大会上作经验报告,求抽取的3人中恰有一个普通班学生的概率.

(1)求第三组的频率;
(2)已知实验班学生成绩


(3)在(2)的条件下,按分层抽样的方法从第5组中抽取5人进行经验交流,再从这5人中随机抽取3人在全校师生大会上作经验报告,求抽取的3人中恰有一个普通班学生的概率.
某市为提高市民的戒烟意识,通过一个戒烟组织面向全市烟民征招志愿戒烟者,从符合条件的志愿者中随机抽取100名,将年龄分成
,
,
,
,
五组,得到频率分布直方图如图所示.

(1)求图中
的值,并估计这100名志愿者的平均年龄(同一组中的数据用该组区间的中点值作代表);
(2)若年龄在
的志愿者中有2名女性烟民,现从年龄在
的志愿者中随机抽取2人,求至少有一名女性烟民的概率;
(3)该戒烟组织向志愿者推荐了
,
两种戒烟方案,这100名志愿者自愿选取戒烟方案,并将戒烟效果进行统计如下:
完成上面的
列联表,并判断是否有
的把握认为戒烟方案是否有效与方案选取有关.
参考公式:
,
.
参考数据:






(1)求图中

(2)若年龄在


(3)该戒烟组织向志愿者推荐了


| 有效 | 无效 | 合计 |
方案![]() | 48 | | 60 |
方案![]() | 36 | | |
合计 | | | |
完成上面的


参考公式:


参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 |
经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分
满分100分
,得到如图1所示茎叶图.
(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(Ⅱ)如图2按照打分区间
、
、
、
、
绘制的直方图中,求最高矩形的高;
(Ⅲ)从打分在70分以下
不含70分
的同学中抽取3人,求有女生被抽中的概率.



(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(Ⅱ)如图2按照打分区间





(Ⅲ)从打分在70分以下


某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程
的行业标准,予以地方财政补贴.其补贴标准如下表:

2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程
,得到频率分布直方图如图所示.
用样本估计总体,频率估计概率,解决如下问题:

(1)求该市纯电动汽车2017年地方财政补贴的均值;
(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:

该企业现有两种购置方案:
方案一:购买100台直流充电桩和900台交流充电桩;
方案二:购买200台直流充电桩和400台交流充电桩.
假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润
日收入
日维护费用)


2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程

用样本估计总体,频率估计概率,解决如下问题:

(1)求该市纯电动汽车2017年地方财政补贴的均值;
(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:

(同一组数据用该区间的中点值作代表)
2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台; 交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:
方案一:购买100台直流充电桩和900台交流充电桩;
方案二:购买200台直流充电桩和400台交流充电桩.
假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润


为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天的PM2.5日平均浓度(单位:微克/立方米)是监测数据,得到甲地PM2.5日平均浓度的频率分布直方图和乙地PM2.5日平均浓度的频数分布表.
(2)求甲地20天PM2.5日平均浓度的中位数;
(3)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:

记事件
:“甲地市民对空气质量的满意度等级为不满意”.根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件
的概率.
甲地20天PM2.5日平均浓度频率分布直方图
乙地20天PM2.5日平均浓度频数分布表
(2)求甲地20天PM2.5日平均浓度的中位数;
(3)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:

记事件

