下图是500名学生某次数学测试成绩(单位:分)的频率分布直方图,则这500名学生中测试成绩在区间[90,100)中的学生人数是
A.60B.55C.45D.50
当前题号:1 | 题型:单选题 | 难度:0.99
某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位: mm )绘成频率分布直方图如图所示:

(Ⅰ)求该批零件样本尺寸的平均数 x 和样本方差  (同一组中的数据用该组区间的中点值作代表);
(Ⅱ)若该批零件尺寸 服从正态分布  ,其中  近似为样本平均数   近似为样本方差  ,利用该正态分布求  ;
(Ⅲ)若从生产线中任取一零件,测量尺寸为30mm,根据  原则判断该生产线是否正常?
附:  ;若,则  ,  ,  .
当前题号:2 | 题型:解答题 | 难度:0.99
从某小区抽取 100 户居民进行月用电量调查,发现其用电量都在 50 度到 350 度之间,频率分布直方图如图所示.则在这些用户中,用电量落在区间内的户数为__________.
当前题号:3 | 题型:填空题 | 难度:0.99
某校为调查高一、高二学生周日在家学习用时情况,随机抽取了高一、高二各人,对他们的学习时间进行了统计,分别得到了高一学生学习时间(单位:小时)的频数分布表和高二学生学习时间的频率分布直方图.
高一学生学习时间的频数分布表(学习时间均在区间内):
学习时间






频数
3
1
8
4
2
2
 
高二学生学习时间的频率分布直方图:

(1)求高二学生学习时间的频率分布直方图中的值,并根据此频率分布直方图估计该校高二学生学习时间的中位数;
(2)利用分层抽样的方法,从高一学生学习时间在的两组里随机抽取人,再从这人中随机抽取人,求学习时间在这一组中至少有人被抽中的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
某中学举行了数学测试,并从中随机抽取了60名学生的成绩作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.
(I)若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;
(II)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,将全体运动员的成绩绘制成频率分布直方图.同时用茎叶图表示甲,乙两队运动员本次测试的成绩(单位:,且均为整数),由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在以上(包括)的只有两个人,且均在甲队.规定:跳高成绩在以上(包括)定义为“优秀”.
(1)求甲,乙两队运动员的总人数及乙队中成绩在(单位:)内的运动人数
(2)在甲,乙两队所有成绩在以上的运动员中随机选取人,已知至少有人成绩为“优秀”,求两人成绩均“优秀”的概率;
(3)在甲,乙两队中所有的成绩为“优秀”的运动员中随机选取人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数的分布列及期望.
当前题号:6 | 题型:解答题 | 难度:0.99
随着经济的发展,人民的收入水平逐步提高,为了解北京市居民的收入水平,某报社随机调查了名居民的月收入,得到如下的频率分布直方图:

(1)求的值及这名居民的平均月收入(同一组中的数据用该组区间的中点值作代表)
(2)①通过大数据分析,北京人的月收入服从正态分布,其中,求北京人收入落在的概率;
②将频率视为概率,若北京某公司一部门有人,记这人中月收入落在的人数为,求的数学期望.
附:若,则
当前题号:7 | 题型:解答题 | 难度:0.99
某市一个社区微信群“步行者”有成员100人,其中男性70人,女性30人,现统计他们平均每天步行的时间,得到频率分布直方图,如图所示:

若规定平均每天步行时间不少于2小时的成员为“步行健将”,低于2小时的成员为“非步行健将”.已知“步行健将”中女性占.
(1)填写下面列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘步行健将’与性别有关”;

(2)现从“步行健将”中随机选派2人参加全市业余步行比赛,求2人中男性的人数的分布列及数学期望.
参考公式:,其中.
当前题号:8 | 题型:解答题 | 难度:0.99
某班名同学的数学小测成绩的频率分布表如图所示,其中,且分数在的有人.

(1)求的值;
(2)若分数在的人数是分数在的人数的,求从不及格的人中任意选取3人,其中分数在50分以下的人数为,求的数学期.
当前题号:9 | 题型:解答题 | 难度:0.99
某企业准备推出一种花卉植物用于美化城市环境,为评估花卉的生长水平,现对该花卉植株的高度(单位:厘米)进行抽查,所得数据分组为,据此制作的频率分布直方图如图所示.

(1)求出直方图中的值及植株高度不小于20厘米的概率;
(2)利用直方图估算花卉植株高度的中位数.
当前题号:10 | 题型:解答题 | 难度:0.99