为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间内的频率之比为.(计算结果保留小数点后面3位)

(Ⅰ)求这些学生跳绳个数的数值落在区间内的频率;
(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间内的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐
个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:

(1)计算值;
(2)以此样本的频率作为概率,求
①在本次达标测试中,“喵儿”得分等于的概率;
②“喵儿”在本次达标测试中可能得分的分布列及数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内经销该农产品的数量,T表示利润.

(Ⅰ)将T表示为x的函数
(Ⅱ)根据直方图估计利润T不少于57000元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x,则取x=105,且x=105的概率等于需求量落入[100,110,求T的数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某超市从年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取个,并按分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.

(1)写出频率分布直方图甲中的的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,试比较的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于箱且另一个不高于箱的概率;
(3)设表示在未来天内甲种酸奶的日销售量不高于箱的天数,以日留住量落入各组的频率为概率,求的分布列和数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照,,… ,分成组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是(  )

①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为;
②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为;
③若该商场有名职工,考试成绩在分以下的被解雇,则解雇的职工有人;
④若该商场有名职工,商场规定只有安全知识竞赛超过分(包括分)的人员才能成为安全科成员,则安全科成员有人.
A.①③B.②③C.②④D.①④
当前题号:5 | 题型:单选题 | 难度:0.99
随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.

(1)求此人这三年以来每周开车从家到公司的时间之和在(时)内的频率;
(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);
(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在(时)内的周数为,求的分布列以及数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
从某小学随机抽取100名学生,将他们的身高(单位:厘米)按照区间 [ 100 , 110),[ 110 , 120),[ 120 , 130),[130 ,140) , [140 , 150] 进行分组,得到频率分布直方图(如图).
(Ⅰ)求直方图中a的值;
(Ⅱ)若要从身高在[ 120 , 130),[130 ,140) , [140 , 150] 三组内的学生中,用分层抽样的方法选取18人参加一项活动,求从身高在[140 ,150]内的学生中应选取的人数;
(Ⅲ)这100名学生的平均身高约为多少厘米?
当前题号:7 | 题型:解答题 | 难度:0.99
“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在内的人数为92.

(1)估计这些党员干部一周参与主题教育活动的时间的平均值;
(2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在内的党员干部给予奖励,且参与时间在内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.

(1)用样本估计总体,以频率作为概率,若在两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
 
优质花苗
非优质花苗
合计
甲培育法
20
 
 
乙培育法
 
10
 
合计
 
 
 
 
附:下面的临界值表仅供参考.

0.050
0.010
0.001

3.841
6.635
10.828
 
(参考公式:,其中
当前题号:9 | 题型:解答题 | 难度:0.99
市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:
分组









频数
4
8
15
22
25
14
6
4
2
 

(1)根据所给数据将频率分布直方图补充完整(不必说明理由);
(2)根据频率分布直方图估计本市居民月均用水量的中位数;
(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).
当前题号:10 | 题型:解答题 | 难度:0.99