“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:
平均每周进行长跑训练的天数
不大于2天
3天或4天
不少于5天
人数
30
130
40
 
若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.
(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;
(2)根据上表的数据,填写下列列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“是否热烈参与马拉松”与性别有关?
 
热烈参与者
非热烈参与者
合计

 
 
140

 
55
 
合计
 
 
 
 
参考公式及数据:,其中
















 
当前题号:1 | 题型:解答题 | 难度:0.99
某蔬菜批发商分别在甲、乙两市场销售某种蔬菜(两个市场的销售互不影响),己知该蔬菜每售出1吨获利500元,未售出的蔬菜低价处理,每吨亏损100 元.现统计甲、乙两市场以往100个销售周期该蔬菜的市场需求量的频数分布,如下表:
 
以市场需求量的频率代替需求量的概率.设批发商在下个销售周期购进吨该蔬菜,在 甲、乙两市场同时销售,以(单位:吨)表示下个销售周期两市场的需求量,(单位:元)表示下个销售周期两市场的销售总利润.
(Ⅰ)当时,求的函数解析式,并估计销售利润不少于8900元的槪率;
(Ⅱ)以销售利润的期望为决策依据,判断应选用哪—个.
当前题号:2 | 题型:解答题 | 难度:0.99
为了进一步推动全市学习型党组织、学习型社会建设,某市组织开展“学习强国”知识测试,每人测试文化、经济两个项目,每个项目满分均为60分.从全体测试人员中随机抽取了100人,分别统计他们文化、经济两个项目的测试成绩,得到文化项目测试成绩的频数分布表和经济项目测试成绩的频率分布直方图如下:

经济项目测试成绩频率分布直方图
分数区间
频数

2

3

5

15

40

35
 
文化项目测试成绩频数分布表
将测试人员的成绩划分为三个等级如下:分数在区间内为一般,分数在区间内为良好,分数在区间内为优秀.
(1)在抽取的100人中,经济项目等级为优秀的测试人员中女生有14人,经济项目等级为一般或良好的测试人员中女生有34人.填写下面列联表,并根据列联表判断是否有以上的把握认为“经济项目等级为优秀”与性别有关?
 
优秀
一般或良好
合计
男生数
 
 
 
女生数
 
 
 
合计
 
 
 
 
(2)用这100人的样本估计总体.
(i)求该市文化项目测试成绩中位数的估计值.
(ii)对该市文化项目、经济项目的学习成绩进行评价.
附:

0.150
0.050
0.010

2.072
3.841
6.635
 
.
当前题号:3 | 题型:解答题 | 难度:0.99
某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数t
1
2
3
4
5
销量(百件)/天
0.5
0.6
1
1.4
1.7
 
(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间

(百分比)

[1,3)
[3,5)
[5,7)
[7,9)
[9,11)
[11,13)
频数
20
60
60
30
20
10
 
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(2)将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中 “欲望紧缩型”消费者的人数为随机变量,求的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
分组





频数
10
22
40
20
8
 
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)根据以往经验,可以认为实心球投掷距离近似服从正态分布,其中近似为样本平均值,近似为样本方差,若规定:时,测试成绩为“良好”,请估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;
(2)现在从实心球投掷距离在之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,在被抽取的3人中,记实心球投掷距离在内的人数为,求的概率分布及数学期望.
附:若服从,则.
当前题号:5 | 题型:解答题 | 难度:0.99
某校进行青少年法律知识测试,测试成绩经过统计得到如图所示的频率分布直方图,若用扇形统计图表示,则在扇形图中分所对应的圆心角大小为(    )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
某公司随机收集了该公司所生产的四类产品的有关售后调查数据,经分类整理得到下表:
产品类型




产品件数
100
50
200
150
使用满意率
0.9
0.7
0.8
0.5
 
使用满意率是指:一类产品销售中获得用户满意评价的件数与该类产品的件数的比值.
(1)从公司收集的这些产品中随机选取1件,求这件产品是获得用户满意评价的丙类产品的概率;
(2)假设该公司的甲类产品共销售10000件,试估计这些销售的甲类产品中,不能获得用户满意评价的件数.
当前题号:7 | 题型:解答题 | 难度:0.99
某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4

保费






 
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4

频数
60
50
30
30
20
10
 
(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(Ⅲ)求续保人本年度的平均保费估计值.
当前题号:8 | 题型:解答题 | 难度:0.99
某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了50位高三学生的成绩进行统计分析,得到如图所示频数分布表:
分组





频数
3
11
18
12
6
 
(1)根据频数分布表计算成绩在的频率并计算这组数据的平均值(同组的数据用该组区间的中点值代替);
(2)用分层抽样的方法从成绩在的学生中共抽取5人,从这5人中任取2人,求成绩在中各有1人的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,处罚时,得到如下数据:
处罚金额(单位:元)
50
100
150
200
迟到的人数
50
40
20
0
 
若用表中数据所得频率代替概率.
(Ⅰ)当处罚金定为100元时,员工迟到的概率会比不进行处罚时降低多少?
(Ⅱ)将选取的200人中会迟到的员工分为两类:类员工在罚金不超过100元时就会改正行为;类是其他员工.现对类与类员工按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类员工的概率是多少?
当前题号:10 | 题型:解答题 | 难度:0.99